Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 050205    DOI: 10.1088/1674-1056/adcb99
Special Issue: SPECIAL TOPIC — Computational programs in complex systems
SPECIAL TOPIC — Computational programs in complex systems Prev   Next  

Trajectory tracking on the optimal path of two-dimensional quadratic barrier escaping

Zengxuan Zhao(赵曾轩)1, Xiuying Zhang(张秀颖)1, Pengchen Zhao(赵鹏琛)1, Chunyang Wang(王春阳)1,2,†, Chunlei Xia(夏春雷)2, Mushtaq Rana Imran1, and Joelous Malamula Nyasulu1
1 Institute of Theoretical Physics, School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China;
2 Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
Abstract  The diffusion trajectory of a Brownian particle passing over the saddle point of a two-dimensional quadratic potential energy surface is tracked in detail according to the deep learning strategies. Generative adversarial networks (GANs) emanating in the category of machine learning (ML) frameworks are used to generate and assess the rationality of the data. While their optimization is based on the long short-term memory (LSTM) strategies. In addition to drawing a heat map, the optimal path of two-dimensional (2D) diffusion is simultaneously demonstrated in a stereoscopic space. The results of our simulation are completely consistent with the previous theoretical predictions.
Keywords:  trajectory tracking      optimal path      two-dimensional barrier escaping      deep learning  
Received:  24 December 2024      Revised:  09 April 2025      Accepted manuscript online:  11 April 2025
PACS:  02.70.-c (Computational techniques; simulations)  
  05.40.Jc (Brownian motion)  
  07.05.Bx (Computer systems: hardware, operating systems, computer languages, and utilities)  
Fund: This work was supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2020MA092) and the Innovation Project for Graduate Students of Ludong University (Grant No. IPGS2024-048).
Corresponding Authors:  Chunyang Wang     E-mail:  wchy@foxmail.com

Cite this article: 

Zengxuan Zhao(赵曾轩), Xiuying Zhang(张秀颖), Pengchen Zhao(赵鹏琛), Chunyang Wang(王春阳), Chunlei Xia(夏春雷), Mushtaq Rana Imran, and Joelous Malamula Nyasulu Trajectory tracking on the optimal path of two-dimensional quadratic barrier escaping 2025 Chin. Phys. B 34 050205

[1] Aguiar C E, Barbosa V C, Donangelo R and Souza S R 1989 Nucl. Phys. A 491 301
[2] Aguiar C E, Barbosa V C and Donangelo R 1990 Nucl. Phys. A 517 205
[3] Abe Y, Boilley D, Giraud B G and Wada T 2000 Phys. Rev. E 61 1125
[4] Zagrebaev V and Greiner W 2005 J. Phys. G: Nucl. Part. Phys. 31 825
[5] Zagrebaev V and Greiner W 2007 J. Phys. G: Nucl. Part. Phys. 34 1
[6] Wang C Y, Jia Y and Bao J D 2008 Phys. Rev. C 77 024603
[7] Wang J, Wang C, Xiao L, Ma H, et al. 2022 Physica A 588 126572
[8] LeCun Y, Bengio Y and Hinton G 2015 Nature 521 436
[9] Wang X, Zhao Y and Pourpanah F 2020 Int. J. Mach. Learn. Cyb. 11 747
[10] Sarker I H 2021 SN Comput. Sci. 2 420
[11] Aggarwal A, Mittal M and Battineni G 2021 Int. J. Inf. Manag. Data Insights 1 100004
[12] Goodfellow I J, Abadie J P,Mirza M, Xu B, et al. 2014 NeurIPS 2 2672
[13] Hochreiter S and Schmidhuber J 1997 Neural Comput. 9 1735
[14] Lindemann B, Mller T, Vietz H, Jazdi N and Weyrich M 2021 Procedia CIRP 99 650
[15] Schmidt R M 2019 arxiv:1912.05911
[16] Schmidhuber J 2015 Neural Networks 61 85
[17] Zhang T B, Liang H J, Wang S G, et al. 2022 Chin. Phys. B 31 080701
[18] Zhan Y and Shizgal B D 2019 Phys. Rev. E 99 042101
[19] Basak S, Sengupta S and Chattopadhyay K 2019 Biophys. Rev. 11 851
[20] Berezhkovskii AMand Makarov D E 2018 J. Chem. Phys. 148 201102
[21] Li W and Ma A 2016 J. Chem. Phys. 144 114103
[22] Aquilanti V, Coutinho N D and C-Silva V H 2017 Philos. T. R. Soc. A 375 20160201
[23] Sato Y and Klages R 2019 Phys. Rev. Lett. 122 174101
[24] Li T, Cheng K, Peng Z, et al. 2023 Chin. Phys. B 32 104501
[1] Deep learning-enabled inverse design of polarization-selective structural color based on coding metasurface
Haolin Yang(杨昊霖), Bo Ni(倪波), Junhong Guo(郭俊宏), Hua Zhou(周华), and Jianhua Chang(常建华). Chin. Phys. B, 2025, 34(5): 050702.
[2] Learning complex nonlinear physical systems using wavelet neural operators
Yanan Guo(郭亚楠), Xiaoqun Cao(曹小群), Hongze Leng(冷洪泽), and Junqiang Song(宋君强). Chin. Phys. B, 2025, 34(3): 034702.
[3] Accurate prediction of essential proteins using ensemble machine learning
Dezhi Lu(鲁德志), Hao Wu(吴淏), Yutong Hou(侯俞彤), Yuncheng Wu(吴云成), Yuanyuan Liu(刘媛媛), and Jinwu Wang(王金武). Chin. Phys. B, 2025, 34(1): 018901.
[4] A large language model-powered literature review for high-angle annular dark field imaging
Wenhao Yuan(袁文浩), Cheng Peng(彭程), and Qian He(何迁). Chin. Phys. B, 2024, 33(9): 098703.
[5] High-quality ghost imaging based on undersampled natural-order Hadamard source
Kang Liu(刘炕), Cheng Zhou(周成), Jipeng Huang(黄继鹏), Hongwu Qin(秦宏伍), Xuan Liu(刘轩), Xinwei Li(李鑫伟), and Lijun Song(宋立军). Chin. Phys. B, 2024, 33(9): 094204.
[6] Properties of radiation defects and threshold energy of displacement in zirconium hydride obtained by new deep-learning potential
Xi Wang(王玺), Meng Tang(唐孟), Ming-Xuan Jiang(蒋明璇), Yang-Chun Chen(陈阳春), Zhi-Xiao Liu(刘智骁), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2024, 33(7): 076103.
[7] Image segmentation of exfoliated two-dimensional materials by generative adversarial network-based data augmentation
Xiaoyu Cheng(程晓昱), Chenxue Xie(解晨雪), Yulun Liu(刘宇伦), Ruixue Bai(白瑞雪), Nanhai Xiao(肖南海), Yanbo Ren(任琰博), Xilin Zhang(张喜林), Hui Ma(马惠), and Chongyun Jiang(蒋崇云). Chin. Phys. B, 2024, 33(3): 030703.
[8] Generation of orbital angular momentum hologram using a modified U-net
Zhi-Gang Zheng(郑志刚), Fei-Fei Han(韩菲菲), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2024, 33(3): 034207.
[9] Quantum state estimation based on deep learning
Haowen Xiao(肖皓文) and Zhiguang Han(韩枝光). Chin. Phys. B, 2024, 33(12): 120307.
[10] A deep learning method based on prior knowledge with dual training for solving FPK equation
Denghui Peng(彭登辉), Shenlong Wang(王神龙), and Yuanchen Huang(黄元辰). Chin. Phys. B, 2024, 33(1): 010202.
[11] Classification and structural characteristics of amorphous materials based on interpretable deep learning
Jiamei Cui(崔佳梅), Yunjie Li(李韵洁), Cai Zhao(赵偲), and Wen Zheng(郑文). Chin. Phys. B, 2023, 32(9): 096101.
[12] Crysformer: An attention-based graph neural network for properties prediction of crystals
Tian Wang(王田), Jiahui Chen(陈家辉), Jing Teng(滕婧), Jingang Shi(史金钢),Xinhua Zeng(曾新华), and Hichem Snoussi. Chin. Phys. B, 2023, 32(9): 090703.
[13] Disruption prediction based on fusion feature extractor on J-TEXT
Wei Zheng(郑玮), Fengming Xue(薛凤鸣), Zhongyong Chen(陈忠勇), Chengshuo Shen(沈呈硕), Xinkun Ai(艾鑫坤), Yu Zhong(钟昱), Nengchao Wang(王能超), Ming Zhang(张明),Yonghua Ding(丁永华), Zhipeng Chen(陈志鹏), Zhoujun Yang(杨州军), and Yuan Pan(潘垣). Chin. Phys. B, 2023, 32(7): 075203.
[14] Modeling differential car-following behavior under normal and rainy conditions: A memory-based deep learning method with attention mechanism
Hai-Jian Bai(柏海舰), Chen-Chen Guo(过晨晨), Heng Ding(丁恒), Li-Yang Wei(卫立阳), Ting Sun(孙婷), and Xing-Yu Chen(陈星宇). Chin. Phys. B, 2023, 32(6): 060507.
[15] Inatorial forecasting method considering macro and micro characteristics of chaotic traffic flow
Yue Hou(侯越), Di Zhang(张迪), Da Li(李达), and Ping Yang(杨萍). Chin. Phys. B, 2023, 32(10): 100508.
No Suggested Reading articles found!