Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 046101    DOI: 10.1088/1674-1056/adb38f
SPECIAL TOPIC — Structures and properties of materials under high pressure Prev   Next  

Strain rate effects on pressure-induced amorphous-to-amorphous transformation in fused silica

Wenhao Song(宋文豪)1, Bo Gan(甘波)1, Dongxiao Liu(刘东晓)2, Jie Wu(吴杰)1, Martin T. Dove1, and Youjun Zhang(张友君)1,3,†
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 National Key Laboratory of Plasma Physics, Laser Fusion Research Center (LFRC), Chinese Academy of Engineering Physics, Mianyang 621900, China;
3 Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065, China
Abstract  Fused silica (SiO2 glass), a key amorphous component of Earth's silicate minerals, undergoes coordination and phase transformations under high pressure. Although extensive studies have been conducted, discrepancies between theoretical and experimental studies remain, particularly regarding strain rate effects during compression. Here, we examine strain rate influences on the shock-induced amorphous-amorphous phase transitions in fused silica by measuring its Hugoniot equation of state and longitudinal sound velocity (CL) up to 7 GPa at strain rates of 106-107 s1 using a one-stage light-gas gun. A discontinuity in the relationship between shock velocity (US) and particle velocity (UP) and a significant softening in CL of fused silica were observed near 5 GPa under shock loading. Our results indicate that high strain rates restrict Si-O-Si rotation in fused silica, modifying their bonds and increasing silicon coordination. The transition pressure by shock compression is significantly higher than that under static high-pressure conditions (2-3 GPa), which agrees with some recent theoretical predictions with high compression rates, reflecting the greater pressure needed to overcome energy barriers with the strain rate increase. These findings offer insights into strain rate-dependent phase transitions in fused silica and other silicate minerals (e.g., quartz, olivine, and forsterite), bridging gaps between theoretical simulations and experiments.
Keywords:  fused silica      shock compression      phase transition kinetics      strain rate  
Received:  28 December 2024      Revised:  02 February 2025      Accepted manuscript online:  07 February 2025
PACS:  61.43.Fs (Glasses)  
  64.70.P- (Glass transitions of specific systems)  
  91.60.Gf (High-pressure behavior)  
  91.60.Hg (Phase changes)  
Fund: The authors acknowledge Yang Wang, Luyan Zhou, and Haidong Jin for their help in shock-wave experiments. This work was supported by the National Natural Science Foundation of China (Grant Nos. 42422201, 12175211, and 12350710177) and the Sichuan Science and Technology Program (Grant No. 2023NSFSC1910).
Corresponding Authors:  Youjun Zhang     E-mail:  zhangyoujun@scu.edu.cn

Cite this article: 

Wenhao Song(宋文豪), Bo Gan(甘波), Dongxiao Liu(刘东晓), Jie Wu(吴杰), Martin T. Dove, and Youjun Zhang(张友君) Strain rate effects on pressure-induced amorphous-to-amorphous transformation in fused silica 2025 Chin. Phys. B 34 046101

[1] Duffy T, Madhusudhan N and Lee K K M 2015 Treatise on Geophysics 2 149
[2] Wu Y, Wang Y, Zhang Y, Jin Z, Wang C and Zhou C 2011 Chin. Sci. Bull. 57 894
[3] Wackerle J 1962 J. Appl. Phys. 33 922
[4] McQueen R, Fritz J and Marsh S 1963 Journal of Geophysical Research 68 2319
[5] McQueen R 1968 Seismic Coupling. Proceedings of a meeting sponsored by the Advanced Research Projects Agency at Stanford Research Institute, Menlo Park, California, pp. 15-16
[6] Green S, Isbell W, Jones A, Maiden C, Perkins R and Shipman F 1968 Material Properties Measurements for Selected Materials, NASA-CR-73230
[7] Hasmy A, Ispas S and Hehlen B 2021 Nature 599 62
[8] Langenhorst F 2024 Nature Geoscience 17 592
[9] Lu H B 2024 Reports on Progress in Physics 87 032601
[10] Berryman E J,Winey J M, Gupta YMand Duffy T S 2019 Geophysical Research Letters 46 13695
[11] Gleason A E, Bolme C A, Lee H J, Nagler B, Galtier E, Milathianaki D, Hawreliak J, Kraus R G, Eggert J H, Fratanduono D E, Collins G W, Sandberg R, Yang W and Mao W L 2015 Nat. Commun. 6 8709
[12] Tracy S J, Turneaure S J and Duffy T S 2018 Phys. Rev. Lett. 120 135702
[13] Gleason A E, Bolme C A, Lee H J, Nagler B, Galtier E, Kraus R G, Sandberg R, Yang W, Langenhorst F and Mao W L 2017 Nat. Commun. 8 1481
[14] Alexander C S, Chhabildas L C, Reinhart W D and Templeton D W 2008 International Journal of Impact Engineering 35 1376
[15] Haines J, Leger J M, Gorelli F and Hanfland M 2001 Phys. Rev. Lett. 87 155503
[16] Bykova E, Bykov M, Cernok A, Tidholm J, Simak S I, Hellman O, Belov M P, Abrikosov I A, Liermann H P, Hanfland M, Prakapenka V B, Prescher C, Dubrovinskaia N and Dubrovinsky L 2018 Nat. Commun. 9 4789
[17] Hu Q Y, Shu J F, Cadien A, Meng Y, Yang W G, Sheng H W and Mao H K 2015 Nat. Commun. 6 6630
[18] Ono S, Kikegawa T, Higo Y and Tange Y 2017 Physics of the Earth and Planetary Interiors 264 1
[19] Tsiok O B, Brazhkin V V, Lyapin A G and Khvostantsev L G 1998 Phys. Rev. Lett. 80 999
[20] Weigel C, Mebarki M, Clement S, Vacher R, Foret M and Ruffle B 2019 Phys. Rev. B 100 094102
[21] Zha C, Hemley R J, Mao H, Duffy T S and Meade C 1994 Phys. Rev. B 50 13105
[22] Neyer B T 1987 Proc. SPIE 648 301
[23] Duffy T S and Ahrens T J 1995 Journal of Geophysical Research: Solid Earth 100 529
[24] Trachenko K and Dove M T 2003 Phys. Rev. B 67 064107
[25] Trachenko K, Dove M T, Brazhkin V and El’kin F S 2004 Phys. Rev. Lett. 93 135502
[26] Ryuo E,Wakabayashi D, Koura A and Shimojo F 2017 Phys. Rev. B 96 054206
[27] Daryadel S S, Mantena P R, Kim K, Stoddard D and Rajendran A M 2016 J. Non-Crystalline Solids 432 432
[28] Ohtsuka Y 1973 J. Phys. E Sci. Instrum. 6 868
[29] Li X H, Yang C, Gan B, Huang Y Q, Wang Q M, Sekine T, Hong J W, Jiang G and Zhang Y J 2022 Phys. Rev. B 105 104110
[30] Weng J D, Tan H, Wang X, Ma Y, Hu S L and Wang X S 2006 Appl. Phys. Lett. 89 111101
[31] Huang Y Q, Hou M Q, Gan B, Li X H, He D W, Jiang G, Zhang Y J and Liu Y 2022 Journal of Geophysical Research-Solid Earth 127 11
[32] Schmitt D R and Ahrens T J 1989 Journal of Geophysical Research 94 5851
[33] Ahrens T J and Johnson M L 1995 Mineral Physics & Crystallography pp. 143-184
[34] Kondo K-i, Ahrens T J and Sawaoka A 1983 J. Appl. Phys. 54 4382
[35] Lyzenga G A and Ahrens T J 1980 Geophysical Research Letters 7 141
[36] Marsh S P 1980 LASL shock Hugoniot data (University of California Press)
[37] Schmitt D, Svendsen B and Ahrens T J 1986 Shock Waves in Condensed Matter, Gupta Y M ed. (Boston, MA: Springer US) pp. 261- 265
[38] Mitchell A and Nellis W 1981 J. Appl. Phys. 52 3363
[39] Gan B, Jiang G, Huang Y Q, Zhang H, Hu Q Y and Zhang Y J 2023 Phys. Rev. B 107 064106
[40] Zhou L, Jiang G, Gan B, Zhuang Y, Zhang H and Zhang Y 2023 J. Appl. Phys. 133 14
[41] Vukcevich M R 1972 J. Non-Crystal. Solids 11 25
[42] Grimsditch M 1984 Phys. Rev. Lett. 52 2379
[43] Kondo K, Lio S and Sawaoka A 1981 J. Appl. Phys. 52 2826
[44] Meade C and Jeanloz R 1987 Phys. Rev. B 35 236
[45] Smith R, Minich R, Rudd R, Eggert J, Bolme C, Brygoo S, Jones A and Collins G 2012 Phys. Rev. B 86 245204
[46] Kim H, Hambir S A and Dlott D D 2000 Journal of Physical Chemistry B 104 4239
[47] Schuler K W, Nunziato J W and Walsh E K 1973 Int. J. Solids Struct. (UK) 9 1237
[48] Telfair D 1954 J. Appl. Phys. 25 1062
[49] Banishev A A, Shaw W L, Curtis A D and Dlott D D 2014 Appl. Phys. Lett. 104 101914
[50] Grady D E 1980 Journal of Geophysical Research 85 913
[51] Renou R, Soulard L, Lescoute E, Dereure C, Loison D and Guin J-P 2017 The Journal of Physical Chemistry C 121 13324
[52] Syono Y, Goto T, Takei H, Tokonami M and Nobugai K 1981 Science 214 177
[53] Langenhorst F, Boustie M, Migault A and Romain J 1999 Earth and Planetary Science Letters 173 333
[54] Poirier J, Peyronneau J, Madon M, Guyot F and Revcolevschi A 1986 Nature 321 603
[55] Zhang J S and Bass J D 2016 Geophysical Research Letters 43 9611
[56] Zhang Y J, Sekine T, He H L, Yu Y, Liu F S and Zhang M J 2016 Scientific Reports 6 22473
[57] Duffy T S and Ahrens T J 1992 Journal of Geophysical Research: Solid Earth 97 4503
[58] Barron T H K, Collins J F, Smith T W and White G K 1982 J. Phys. C Solid State Phys. 15 4311
[59] Petrovtsev A V 2006 AIP Conference Proceedings 849 380
[60] Rigg P A, Knudson M D, Scharff R J and Hixson R S 2014 J. Appl. Phys. 116 033515
[1] Residual stress modeling of mitigated fused silica damage sites with CO2 laser annealing
Chuanchao Zhang(张传超), Wei Liao(廖威), Lijuan Zhang(张丽娟), Xiaolong Jiang(蒋晓龙), Zhenhua Fang(方振华), and Xiaodong Jiang(蒋晓东). Chin. Phys. B, 2024, 33(3): 036101.
[2] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[3] Molecular dynamics study of coupled layer thickness and strain rate effect on tensile behaviors of Ti/Ni multilayered nanowires
Meng-Jia Su(宿梦嘉), Qiong Deng(邓琼), Lan-Ting Liu(刘兰亭), Lian-Yang Chen(陈连阳), Meng-Long Su(宿梦龙), and Min-Rong An(安敏荣). Chin. Phys. B, 2021, 30(9): 096201.
[4] Optical modulation of repaired damage site on fused silica produced by CO2 laser rapid ablation mitigation
Chao Tan(谭超), Lin-Jie Zhao(赵林杰), Ming-Jun Chen(陈明君), Jian Cheng(程健), Zhao-Yang Yin(尹朝阳), Qi Liu(刘启), Hao Yang(杨浩), Wei Liao(廖威). Chin. Phys. B, 2020, 29(5): 054209.
[5] Time-dependent photothermal characterization on damage of fused silica induced by pulsed 355-nm laser with high repetition rate
Chun-Yan Yan(闫春燕), Bao-An Liu(刘宝安), Xiang-Cao Li(李香草), Chang Liu(刘畅), Xin Ju(巨新). Chin. Phys. B, 2020, 29(2): 027901.
[6] Atomistic study on tensile fracture of densified silica glass and its dependence on strain rate
Zhi-Qiang Hu(胡志强), Jian-Li Shao(邵建立), Yi-Fan Xie(谢轶凡), and Yong Mei(梅勇). Chin. Phys. B, 2020, 29(12): 128101.
[7] Damage characteristics of laser plasma shock wave on rear surface of fused silica glass
Xiong Shen(沈雄), Guo-Ying Feng(冯国英), Sheng Jing(景晟), Jing-Hua Han(韩敬华), Ya-Guo Li(李亚国), Kai Liu(刘锴). Chin. Phys. B, 2019, 28(8): 085202.
[8] Intense supercontinuum generation in the near-ultraviolet range from a 400-nm femtosecond laser filament array in fused silica
Dongwei Li(李东伟), Lanzhi Zhang(张兰芝), Saba Zafar, He Song(宋鹤), Zuoqiang Hao(郝作强), Tingting Xi(奚婷婷), Xun Gao(高勋), Jingquan Lin(林景全). Chin. Phys. B, 2017, 26(7): 074213.
[9] Improvement of laser damage thresholds of fused silica by ultrasonic-assisted hydrofluoric acid etching
Yuan Li(李源), Hongwei Yan(严鸿维), Ke Yang(杨科), Caizhen Yao(姚彩珍), Zhiqiang Wang(王志强), Chunyan Yan(闫春燕), Xinshu Zou(邹鑫书), Xiaodong Yuan(袁晓东), Liming Yang(杨李茗), Xin Ju(巨新). Chin. Phys. B, 2017, 26(11): 118104.
[10] Measurement of transient Raman spectrum on gas-gun loading platform and its application in liquid silane
Yi-Gao Wang(汪贻高), Fu-Sheng Liu(刘福生), Qi-Jun Liu(刘其军), Wen-Peng Wang(王文鹏), Ming-Jian Zhang(张明建), Feng Xi(习锋), Ling-Cang Cai(蔡灵仓), Ning-Chao Zhang(张宁超). Chin. Phys. B, 2017, 26(10): 103301.
[11] Stable structure and optical properties of fused silica with NBOHC-E' defect
Peng-Fei Lu(芦鹏飞), Li-Yuan Wu(伍力源), Yang Yang(杨阳), Wei-Zheng Wang(王唯正), Chun-Fang Zhang(张春芳), Chuang-Hua Yang(杨创华), Rui Su(苏锐), Jun Chen(陈军). Chin. Phys. B, 2016, 25(8): 086801.
[12] Correlation of polishing-induced shallow subsurface damages with laser-induced gray haze damages in fused silica optics
Xiang He(何祥), Heng Zhao(赵恒), Gang Wang(王刚), Peifan Zhou(周佩璠), Ping Ma(马平). Chin. Phys. B, 2016, 25(8): 088105.
[13] Subsurface defect characterization and laser-induced damage performance of fused silica optics polished with colloidal silica and ceria
Xiang He(何祥), Gang Wang(王刚), Heng Zhao(赵恒), Ping Ma(马平). Chin. Phys. B, 2016, 25(4): 048104.
[14] Influence of secondary treatment with CO2 laser irradiation for mitigation site on fused silica surface
Yong Jiang(蒋勇), Qiang Zhou(周强), Rong Qiu(邱荣), Xiang Gao(高翔), Hui-Li Wang(王慧丽), Cai-Zhen Yao(姚彩珍), Jun-Bo Wang(王俊波), Xin Zhao(赵鑫), Chun-Ming Liu(刘春明), Xia Xiang(向霞), Xiao-Tao Zu(祖小涛), Xiao-Dong Yuan(袁晓东), Xin-Xiang Miao(苗心向). Chin. Phys. B, 2016, 25(10): 108104.
[15] Numerical simulation of modulation to incident laser by submicron to micron surface contaminants on fused silica
Liang Yang(杨亮), Xia Xiang(向霞), Xin-Xiang Miao(苗心向), Li Li(李莉), Xiao-Dong Yuan(袁晓东), Zhong-Hua Yan(晏中华), Guo-Rui Zhou(周国瑞), Hai-Bing Lv(吕海兵), Wan-Guo Zheng(郑万国), Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2016, 25(1): 014210.
No Suggested Reading articles found!