Strain rate effects on pressure-induced amorphous-to-amorphous transformation in fused silica
Wenhao Song(宋文豪)1, Bo Gan(甘波)1, Dongxiao Liu(刘东晓)2, Jie Wu(吴杰)1, Martin T. Dove1, and Youjun Zhang(张友君)1,3,†
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China; 2 National Key Laboratory of Plasma Physics, Laser Fusion Research Center (LFRC), Chinese Academy of Engineering Physics, Mianyang 621900, China; 3 Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065, China
Abstract Fused silica (SiO glass), a key amorphous component of Earth's silicate minerals, undergoes coordination and phase transformations under high pressure. Although extensive studies have been conducted, discrepancies between theoretical and experimental studies remain, particularly regarding strain rate effects during compression. Here, we examine strain rate influences on the shock-induced amorphous-amorphous phase transitions in fused silica by measuring its Hugoniot equation of state and longitudinal sound velocity () up to 7 GPa at strain rates of 10-10 s using a one-stage light-gas gun. A discontinuity in the relationship between shock velocity () and particle velocity () and a significant softening in of fused silica were observed near GPa under shock loading. Our results indicate that high strain rates restrict Si-O-Si rotation in fused silica, modifying their bonds and increasing silicon coordination. The transition pressure by shock compression is significantly higher than that under static high-pressure conditions (2-3 GPa), which agrees with some recent theoretical predictions with high compression rates, reflecting the greater pressure needed to overcome energy barriers with the strain rate increase. These findings offer insights into strain rate-dependent phase transitions in fused silica and other silicate minerals (e.g., quartz, olivine, and forsterite), bridging gaps between theoretical simulations and experiments.
Fund: The authors acknowledge Yang Wang, Luyan Zhou, and Haidong Jin for their help in shock-wave experiments. This work was supported by the National Natural Science Foundation of China (Grant Nos. 42422201, 12175211, and 12350710177) and the Sichuan Science and Technology Program (Grant No. 2023NSFSC1910).
Wenhao Song(宋文豪), Bo Gan(甘波), Dongxiao Liu(刘东晓), Jie Wu(吴杰), Martin T. Dove, and Youjun Zhang(张友君) Strain rate effects on pressure-induced amorphous-to-amorphous transformation in fused silica 2025 Chin. Phys. B 34 046101
[1] Duffy T, Madhusudhan N and Lee K K M 2015 Treatise on Geophysics 2 149 [2] Wu Y, Wang Y, Zhang Y, Jin Z, Wang C and Zhou C 2011 Chin. Sci. Bull. 57 894 [3] Wackerle J 1962 J. Appl. Phys. 33 922 [4] McQueen R, Fritz J and Marsh S 1963 Journal of Geophysical Research 68 2319 [5] McQueen R 1968 Seismic Coupling. Proceedings of a meeting sponsored by the Advanced Research Projects Agency at Stanford Research Institute, Menlo Park, California, pp. 15-16 [6] Green S, Isbell W, Jones A, Maiden C, Perkins R and Shipman F 1968 Material Properties Measurements for Selected Materials, NASA-CR-73230 [7] Hasmy A, Ispas S and Hehlen B 2021 Nature 599 62 [8] Langenhorst F 2024 Nature Geoscience 17 592 [9] Lu H B 2024 Reports on Progress in Physics 87 032601 [10] Berryman E J,Winey J M, Gupta YMand Duffy T S 2019 Geophysical Research Letters 46 13695 [11] Gleason A E, Bolme C A, Lee H J, Nagler B, Galtier E, Milathianaki D, Hawreliak J, Kraus R G, Eggert J H, Fratanduono D E, Collins G W, Sandberg R, Yang W and Mao W L 2015 Nat. Commun. 6 8709 [12] Tracy S J, Turneaure S J and Duffy T S 2018 Phys. Rev. Lett. 120 135702 [13] Gleason A E, Bolme C A, Lee H J, Nagler B, Galtier E, Kraus R G, Sandberg R, Yang W, Langenhorst F and Mao W L 2017 Nat. Commun. 8 1481 [14] Alexander C S, Chhabildas L C, Reinhart W D and Templeton D W 2008 International Journal of Impact Engineering 35 1376 [15] Haines J, Leger J M, Gorelli F and Hanfland M 2001 Phys. Rev. Lett. 87 155503 [16] Bykova E, Bykov M, Cernok A, Tidholm J, Simak S I, Hellman O, Belov M P, Abrikosov I A, Liermann H P, Hanfland M, Prakapenka V B, Prescher C, Dubrovinskaia N and Dubrovinsky L 2018 Nat. Commun. 9 4789 [17] Hu Q Y, Shu J F, Cadien A, Meng Y, Yang W G, Sheng H W and Mao H K 2015 Nat. Commun. 6 6630 [18] Ono S, Kikegawa T, Higo Y and Tange Y 2017 Physics of the Earth and Planetary Interiors 264 1 [19] Tsiok O B, Brazhkin V V, Lyapin A G and Khvostantsev L G 1998 Phys. Rev. Lett. 80 999 [20] Weigel C, Mebarki M, Clement S, Vacher R, Foret M and Ruffle B 2019 Phys. Rev. B 100 094102 [21] Zha C, Hemley R J, Mao H, Duffy T S and Meade C 1994 Phys. Rev. B 50 13105 [22] Neyer B T 1987 Proc. SPIE 648 301 [23] Duffy T S and Ahrens T J 1995 Journal of Geophysical Research: Solid Earth 100 529 [24] Trachenko K and Dove M T 2003 Phys. Rev. B 67 064107 [25] Trachenko K, Dove M T, Brazhkin V and El’kin F S 2004 Phys. Rev. Lett. 93 135502 [26] Ryuo E,Wakabayashi D, Koura A and Shimojo F 2017 Phys. Rev. B 96 054206 [27] Daryadel S S, Mantena P R, Kim K, Stoddard D and Rajendran A M 2016 J. Non-Crystalline Solids 432 432 [28] Ohtsuka Y 1973 J. Phys. E Sci. Instrum. 6 868 [29] Li X H, Yang C, Gan B, Huang Y Q, Wang Q M, Sekine T, Hong J W, Jiang G and Zhang Y J 2022 Phys. Rev. B 105 104110 [30] Weng J D, Tan H, Wang X, Ma Y, Hu S L and Wang X S 2006 Appl. Phys. Lett. 89 111101 [31] Huang Y Q, Hou M Q, Gan B, Li X H, He D W, Jiang G, Zhang Y J and Liu Y 2022 Journal of Geophysical Research-Solid Earth 127 11 [32] Schmitt D R and Ahrens T J 1989 Journal of Geophysical Research 94 5851 [33] Ahrens T J and Johnson M L 1995 Mineral Physics & Crystallography pp. 143-184 [34] Kondo K-i, Ahrens T J and Sawaoka A 1983 J. Appl. Phys. 54 4382 [35] Lyzenga G A and Ahrens T J 1980 Geophysical Research Letters 7 141 [36] Marsh S P 1980 LASL shock Hugoniot data (University of California Press) [37] Schmitt D, Svendsen B and Ahrens T J 1986 Shock Waves in Condensed Matter, Gupta Y M ed. (Boston, MA: Springer US) pp. 261- 265 [38] Mitchell A and Nellis W 1981 J. Appl. Phys. 52 3363 [39] Gan B, Jiang G, Huang Y Q, Zhang H, Hu Q Y and Zhang Y J 2023 Phys. Rev. B 107 064106 [40] Zhou L, Jiang G, Gan B, Zhuang Y, Zhang H and Zhang Y 2023 J. Appl. Phys. 133 14 [41] Vukcevich M R 1972 J. Non-Crystal. Solids 11 25 [42] Grimsditch M 1984 Phys. Rev. Lett. 52 2379 [43] Kondo K, Lio S and Sawaoka A 1981 J. Appl. Phys. 52 2826 [44] Meade C and Jeanloz R 1987 Phys. Rev. B 35 236 [45] Smith R, Minich R, Rudd R, Eggert J, Bolme C, Brygoo S, Jones A and Collins G 2012 Phys. Rev. B 86 245204 [46] Kim H, Hambir S A and Dlott D D 2000 Journal of Physical Chemistry B 104 4239 [47] Schuler K W, Nunziato J W and Walsh E K 1973 Int. J. Solids Struct. (UK) 9 1237 [48] Telfair D 1954 J. Appl. Phys. 25 1062 [49] Banishev A A, Shaw W L, Curtis A D and Dlott D D 2014 Appl. Phys. Lett. 104 101914 [50] Grady D E 1980 Journal of Geophysical Research 85 913 [51] Renou R, Soulard L, Lescoute E, Dereure C, Loison D and Guin J-P 2017 The Journal of Physical Chemistry C 121 13324 [52] Syono Y, Goto T, Takei H, Tokonami M and Nobugai K 1981 Science 214 177 [53] Langenhorst F, Boustie M, Migault A and Romain J 1999 Earth and Planetary Science Letters 173 333 [54] Poirier J, Peyronneau J, Madon M, Guyot F and Revcolevschi A 1986 Nature 321 603 [55] Zhang J S and Bass J D 2016 Geophysical Research Letters 43 9611 [56] Zhang Y J, Sekine T, He H L, Yu Y, Liu F S and Zhang M J 2016 Scientific Reports 6 22473 [57] Duffy T S and Ahrens T J 1992 Journal of Geophysical Research: Solid Earth 97 4503 [58] Barron T H K, Collins J F, Smith T W and White G K 1982 J. Phys. C Solid State Phys. 15 4311 [59] Petrovtsev A V 2006 AIP Conference Proceedings 849 380 [60] Rigg P A, Knudson M D, Scharff R J and Hixson R S 2014 J. Appl. Phys. 116 033515
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.