Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(4): 040505    DOI: 10.1088/1674-1056/adb733
Special Issue: Featured Column — COMPUTATIONAL PROGRAMS FOR PHYSICS
COMPUTATIONAL PROGRAMS FOR PHYSICS Prev   Next  

Model-free prediction of chaotic dynamics with parameter-aware reservoir computing

Jianmin Guo(郭建敏)1,2, Yao Du(杜瑶)1, Haibo Luo(罗海波)1, Xuan Wang(王晅)1, Yizhen Yu(于一真)1,†, and Xingang Wang(王新刚)1
1 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China;
2 College of Physics and Electronic Information Engineering, Qinghai Normal University, Xining 810008, China
Abstract  Model-free, data-driven prediction of chaotic motions is a long-standing challenge in nonlinear science. Stimulated by the recent progress in machine learning, considerable attention has been given to the inference of chaos by the technique of reservoir computing (RC). In particular, by incorporating a parameter-control channel into the standard RC, it is demonstrated that the machine is able to not only replicate the dynamics of the training states, but also infer new dynamics not included in the training set. The new machine-learning scheme, termed parameter-aware RC, opens up new avenues for data-based analysis of chaotic systems, and holds promise for predicting and controlling many real-world complex systems. Here, using typical chaotic systems as examples, we give a comprehensive introduction to this powerful machine-learning technique, including the algorithm, the implementation, the performance, and the open questions calling for further studies.
Keywords:  chaos prediction      time-series analysis      bifurcation diagram      parameter-aware reservoir computing  
Received:  27 December 2024      Revised:  15 February 2025      Accepted manuscript online:  18 February 2025
PACS:  05.45.Ac (Low-dimensional chaos)  
  05.45.Tp (Time series analysis)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  89.75.-k (Complex systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12275165). XGW was also supported by the Fundamental Research Funds for the Central Universities (Grant No. GK202202003).
Corresponding Authors:  Yizhen Yu     E-mail:  yzyu@snnu.edu.cn

Cite this article: 

Jianmin Guo(郭建敏), Yao Du(杜瑶), Haibo Luo(罗海波), Xuan Wang(王晅), Yizhen Yu(于一真), and Xingang Wang(王新刚) Model-free prediction of chaotic dynamics with parameter-aware reservoir computing 2025 Chin. Phys. B 34 040505

[1] Ott E 2022 Chaos in Dynamical Systems 2nd Edn. (Cambridge: Cambridge University Press)
[2] Strogatz S H 2015 Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (CRC Press)
[3] Wang W X, Yang R, Lai Y C, Kovanis V and Grebogi C 2011 Phys. Rev. Lett. 106 154101
[4] Lai Y C 2021 Chaos 31 082101
[5] MaassW, Natschlager T and Markram H 2002 Neural Comput. 14 2531
[6] Jaeger H and Haas H 2004 Science 304 78
[7] Pathak J, Lu Z, Hunt B, Girvan M and Ott E 2017 Chaos 27 121102
[8] Lu Z, Hunt B R and Ott E 2018 Chaos 28 061104
[9] Weng T, Yang H, Gu C, Zhang J and Small M 2019 Phys. Rev. E 99 042203
[10] Fan H, Jiang J, Zhang C, Wang X G and Lai Y C 2020 Phys. Rev. Res. 2 012080
[11] Guo Y L, Zhang H, Wang L, Fan H, Xiao J H and Wang X G 2021 Chaos 31 011104
[12] Wang L, Fan H, Xiao J, Lan Y and Wang X G 2022 Phys. Rev. E 105 L052201
[13] Kong L W, Weng Y, Glaz B, Haile M and Lai Y C 2023 Chaos 33 033111
[14] Du Y, Li Q, Fan H, Zhan M, Xiao J and Wang X G 2024 Phys. Rev. Res. 6 013181
[15] Lin Z, Lu Z, Di Z and Tang Y 2024 Nat. Commun. 15 6584
[16] Panahi S and Lai Y C 2024 Chaos 34 051501
[17] Lukosevicius M and Jaeger H 2009 Comput. Sci. Rev. 3 127
[18] Tanaka G, Yamane T, Heroux J B, Nakane R, Kanazawa N, Takeda S, Numata H, Nakano D and Hirose A 2019 Neural Networks 115 100
[19] Yan M, Huang C, Bienstman P, Tino P, Lin W and Sun J 2024 Nat. Commun. 15 2056
[20] Pathak J, Hunt B, Girvan M, Lu Z and Ott E 2018 Phys. Rev. Lett. 120 024102
[21] Szunyogh I, Arcomano T, Pathak J, Wikner A, Hunt B and Ott E 2020 Geophys. Res. Lett. 47 e2020GL087776
[22] Klos C, Kossio Y F K, Goedeke S, Gilra A and Memmesheimer R M 2020 Phys. Rev. Lett. 125 088103
[23] Zhao H 2021 Sci. China-Phys. Mech. Astron. 64 270511
[24] Kong L W, Fan H, Grebogi C and Lai Y C 2021 Phys. Rev. Res. 3 013090
[25] Fan H, Kong L W, Lai Y C and Wang X G 2021 Phys. Rev. Res. 3 023237
[26] Xiao R, Kong LW, Sun Z K and Lai Y C 2021 Phys. Rev. E 104 014205
[27] Zhang H, Fan H,Wang L andWang X G 2021 Phys. Rev. E 104 024205
[28] Kim J Z, Lu Z, Nozari E, Pappas G J and Bassett D S 2021 Nat. Mach. Intell. 3 316
[29] Zhang H, Fan H, Du Y,Wang L andWang X G 2022 Chaos 32 083136
[30] Fan H, Wang L, Du Y, Wang Y, Xiao J and Wang X G 2022 Phys. Rev. Res. 4 013137
[31] Luo H, Du Y, Fan H, Wang X, Guo J and Wang X G 2024 Phys. Rev. E 109 024210
[32] Sisodia D and Jalan S 2024 Phys. Rev. E 110 034211
[33] Zhai Z M, Moradi M, Blaz B, Haile M and Lai Y C 2024 Phys. Rev. Res. 6 013196
[34] Kong L W, Brewer G A and Lai Y C 2024 Nat. Commun. 15 4840
[35] Du Y, Luo H, Guo J, Xiao J, and Wang X G 2024 arXiv:2409.16719nlin.CD]
[36] Lorenz E N 1996 Predictability: A problem partly solved, in Proceedings Seminar on Predictability (ECMWF) Vol. 1
[37] Gauthier D J, Bollt E, Griffith A and Wendson A S B 2021 Nat. Commun. 12 5564
[1] A new piecewise linear Chen system of fractional-order: Numerical approximation of stable attractors
Marius-F. Danca, M. A. Aziz-Alaoui, Michael Small. Chin. Phys. B, 2015, 24(6): 060507.
[2] Bifurcation behavior and coexisting motions in a time-delayed power system
Ma Mei-Ling (马美玲), Min Fu-Hong (闵富红). Chin. Phys. B, 2015, 24(3): 030501.
[3] Symmetrical dynamical characteristic of peak and valley current-mode controlled single-phase H-bridge inverter
Liu Hong-Chen (刘洪臣), Li Fei (李飞), Su Zhen-Xia (苏振霞), Sun Li-Shan (孙立山). Chin. Phys. B, 2013, 22(11): 110501.
[4] Controlling and synchronization of a hyperchaotic system based on passive control
Zhu Da-Rui (朱大锐), Liu Chong-Xin (刘崇新), Yan Bing-Nan (燕并男). Chin. Phys. B, 2012, 21(9): 090509.
[5] Novel four-dimensional autonomous chaotic system generating one-, two-, three- and four-wing attractors
Yu Fei(余飞), Wang Chun-Hua(王春华), Yin Jin-Wen(尹晋文), and Xu Hao(徐浩) . Chin. Phys. B, 2011, 20(11): 110505.
[6] Phase synchronization and its transition in two coupled bursting neurons: theoretical and numerical analysis
Wang Hai-Xia(王海侠), Lu Qi-Shao(陆启韶), and Shi Xia(石霞). Chin. Phys. B, 2010, 19(6): 060509.
[7] Hopf bifurcation analysis of Chen circuit with direct time delay feedback
Ren Hai-Peng(任海鹏), Li Wen-Chao(李文超), and Liu Ding(刘丁). Chin. Phys. B, 2010, 19(3): 030511.
[8] Analysis of transition between chaos and hyper-chaos of an improved hyper-chaotic system
Gu Qiao-Lun(顾巧论) and Gao Tie-Gang(高铁杠). Chin. Phys. B, 2009, 18(1): 84-90.
[9] A novel hyperchaos evolved from three dimensional modified Lorenz chaotic system
Wang Fan-Zhen(王繁珍), Chen Zeng-Qiang(陈增强), Wu Wen-Juan(吴文娟), and Yuan Zhu-Zhi(袁著祉). Chin. Phys. B, 2007, 16(11): 3238-3243.
[10] Bifurcation behaviours of peak current controlled PFC boost converter
Ren Hai-Peng (任海鹏), Liu Ding (刘丁). Chin. Phys. B, 2005, 14(7): 1352-1358.
No Suggested Reading articles found!