Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 028902    DOI: 10.1088/1674-1056/ad1482
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Source localization in signed networks with effective distance

Zhi-Wei Ma(马志伟)1, Lei Sun(孙蕾)2, Zhi-Guo Ding(丁智国)1, Yi-Zhen Huang(黄宜真)3, and Zhao-Long Hu(胡兆龙)1,†
1 Zhejiang Normal University, School of Computer Science and Technology, Jinhua 321004, China;
2 Shanghai Business School, School of Business and Economics, Shanghai 200235, China;
3 Jinhua Polytechnic, School of Information Engineering, Jinhua 321016, China
Abstract  While progress has been made in information source localization, it has overlooked the prevalent friend and adversarial relationships in social networks. This paper addresses this gap by focusing on source localization in signed network models. Leveraging the topological characteristics of signed networks and transforming the propagation probability into effective distance, we propose an optimization method for observer selection. Additionally, by using the reverse propagation algorithm we present a method for information source localization in signed networks. Extensive experimental results demonstrate that a higher proportion of positive edges within signed networks contributes to more favorable source localization, and the higher the ratio of propagation rates between positive and negative edges, the more accurate the source localization becomes. Interestingly, this aligns with our observation that, in reality, the number of friends tends to be greater than the number of adversaries, and the likelihood of information propagation among friends is often higher than among adversaries. In addition, the source located at the periphery of the network is not easy to identify. Furthermore, our proposed observer selection method based on effective distance achieves higher operational efficiency and exhibits higher accuracy in information source localization, compared with three strategies for observer selection based on the classical full-order neighbor coverage.
Keywords:  complex networks      signed networks      source localization      effective distance  
Received:  27 September 2023      Revised:  06 December 2023      Accepted manuscript online:  12 December 2023
PACS:  89.75.-k (Complex systems)  
  87.23.Ge (Dynamics of social systems)  
  89.75.Fb (Structures and organization in complex systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62103375 and 62006106), the Zhejiang Provincial Philosophy and Social Science Planning Project (Grant No. 22NDJC009Z), the Education Ministry Humanities and Social Science Foundation of China (Grant Nos. 19YJCZH056 and 21YJC630120), and the Natural Science Foundation of Zhejiang Province of China (Grant Nos. LY23F030003 and LQ21F020005).
Corresponding Authors:  Zhao-Long Hu     E-mail:  huzhaolong@zjnu.edu.cn

Cite this article: 

Zhi-Wei Ma(马志伟), Lei Sun(孙蕾), Zhi-Guo Ding(丁智国), Yi-Zhen Huang(黄宜真), and Zhao-Long Hu(胡兆龙) Source localization in signed networks with effective distance 2024 Chin. Phys. B 33 028902

[1] Vosoughi S, Roy D and Aral S 2018 Science 359 1146
[2] Ruffo G, Semeraro A, Giachanou A and Rosso P 2023 Comput. Sci. Rev. 47 100531
[3] Lloyd A L and May R M 2001 Science 292 1316
[4] Wang Y Q and Yang X Y 2013 Chin. Phys. B 22 040206
[5] Avci D and Soytürk F 2023 J. Comput. Appl. Math. 419 114740
[6] Chesney B and Citron D 2022 Environ. Pollut. 292 118342
[8] Zhu T, Wang X, Yu Y, Li C, Yao Q and Li Y 2023 J. Environ. Sci. China 123 83
[9] Morone F and Makse H A 2015 Nature 524 65
[10] Yan Z, Xia Y, Guo L, Zhu L, Liang Y and Tu H 2023 Chin. Phys. B 32 068901
[11] Shah D and Zaman T 2010 ACM Sigmetrics Perform. Eval. Rev. 38 203
[12] Zhu K and Ying L 2014 IEEE ACM Trans. Netw. 24 408
[13] Brockmann D and Helbing D 2013 Science 342 1337
[14] Jiang J, Wen S, Yu S, Xiang Y and Zhou W 2015 IEEE Trans. Inf. Forensics Secur. 10 2616
[15] Doerr B, Fouz M and Friedrich T 2016 IEEE ACM Trans. Netw. 24 408
[17] Chang B, Chen E, Zhu F, Liu Q, Xu T and Wang Z 2020 IEEE Trans. Syst. Man Cybern. Syst. 50 2242
[18] Lokhov A Y, Mzard M, Ohta H and Zdeborov L 2014 Phys. Rev. E 90 012801
[19] Altarelli F, Braunstein A, Dallsta L, Lage-Castellanos A and Zecchina R 2014 Phys. Rev. Lett. 112 118701
[20] Nino A F, Alen L, Tomislav S, Hrvoje S and Mile S 2015 Phys. Rev. Lett. 114 248701
[21] Liu Y, Li W, Yang C and Wang J 2022 Sci. Rep. 12 5467
[22] Pedro C P, Patrick T and Martin V 2012 Phys. Rev. Lett. 109 068702
[23] Wuqiong L, Wee-Peng T and Mei L 2014 IEEE J. Sel. Top. Signal Process. 8 586
[24] Fu L, Shen Z, Wang W X, Fan Y and Di Z 2016 Europhys. Lett. 113 18006
[25] Shen Z, Cao S, Wang W X, Di Z and Stanley H E 2017 Proceedings of the AAAI Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, America, p. 217
[27] Ji F, Tay W P and Varshney L R 2017 IEEE Trans. Signal Process. 65 2517
[28] Hu Z L, Shen Z, Tang C B, Xie B B and Lu J F 2018 Phys. Lett. A 382 931
[29] Robert P, Lu X, Krzysztof S, Boleslaw K S and Janusz A H 2018 Sci. Rep. 8 2508
[30] Hu Z L, Shen Z, Han J, Peng H, Lu J F, Jia R, Zhu X B and Zhao D 2019 Physica A 527 121262
[31] Wang H J and Sun K J 2020 Europhys. Lett. 131 48001
[32] Wang H J, Zhang F F and Sun K J 2021 Phys. Lett. A 393 127184
[33] Zhu P, Cheng L, Gao C, Wang Z and Li X 2022 IEEE Trans. Netw. Sci. Eng. 9 1853
[34] Peng S L, Wang H J, Peng H, Zhu X B, Li X, Han J, Zhao D and Hu Z L 2023 Chaos 33 083125
[35] Wang J, Jiang J and Zhao L 2022 Inf. Sci. 588 67
[37] Wang H J, Hu Z L, Tao L, Shao S and Wang S Z 2023 Sci. Rep. 13 5692
[38] Shao Y, Chen L, Chen Y, Liu W and Dai C 2023 Inf. Sci. 635 375
[39] Wan P, Wang X, Pang G, Wang L and Min G 2023 Expert Syst. Appl. 213 119239
[40] Leskovec J, Huttenlocher D and Kleinberg J 2010 Proceedings of the SIGCHI conference on human factors in computing systems, April 10-15, 2010, Atlanta, America, p. 1361
[41] Li L, Fan Y, Zeng A and Di Z 2019 Physica A 525 433
[42] Li A W, Xiao J and Xu X K 2021 Chin. Phys. B 30 038901
[43] Lee K M, Lee S, Min B and Goh K I 2023 Chaos Solitons Fractals 168 113118
[44] Li A W, Xu X K and Fan Y 2022 Chaos Solitons Fractals 162 112489
[45] Zhang P, Zhang X and Xue L 2022 Int. J. Mod. Phys. C 33 2250042
[46] Hu Z L, Wang L and Tang C B 2019 Chaos 29 063117
[47] Brandes U 2001 J. Math. Sociol. 25 163
[48] Li X, Wang X, Zhao C, Zhang X and Yi D 2019 Appl. Sci. 9 3758
[49] Paluch R, Gajewski G, Hoyst J A and Szymanski B K 2020 Future Gener. Comput. Syst. 112 1070
[50] Hu Z L, Han X, Lai Y C and Wang W X 2017 Royal Soc. Open Sci. 4 170091
[51] Erdős P and Rényi A 1999 Science 286 509
[53] Saeedian M, Azimi-Tafreshi N, Jafari G and Kertesz J 2017 Phys. Rev. E 95 022314
[54] Kirkley A, Cantwell G T and Newman M E 2019 Phys. Rev. E 99 012320
[55] Fawcett T 2006 Pattern Recogn. Lett. 27 861
[56] Hanley J A and McNeil B J 1982 Radiology 143 29
[57] Jiang J, Wen S, Yu S, Xiang Y and Zhou W 2018 IEEE Trans. Depend. Secur. Comput. 15 166
[58] Hu Z L, Shen Z, Cao S, Podobnik B, Yang H, Wang W X and Lai Y C 2018 Sci. Rep. 8 2685
[59] Chai Y, Wang Y and Zhu L 2021 IEEE Trans. Inf. Forensics Secur. 16 2621
[60] Huang Q, Zhao C, Zhang X and Yi D 2017 Physica A 468 434
[61] Hu Z L, Han J, Peng H, Lu J F, Zhu X B, Jia R and Li M 2022 IEEE Trans. Netw. Sci. Eng. 9 3515
[62] Cheng L, Li X, Han Z, Luo T, Ma L and Zhu P 2022 Chaos Solitons Fractals 159 112139
[63] Paluch R, Gajewski L G, Suchecki K and Holyst J A 2021 Physica A 582 126238
[1] A multilayer network diffusion-based model for reviewer recommendation
Yiwei Huang(黄羿炜), Shuqi Xu(徐舒琪), Shimin Cai(蔡世民), and Linyuan Lü(吕琳媛). Chin. Phys. B, 2024, 33(3): 038901.
[2] Self-similarity of complex networks under centrality-based node removal strategy
Dan Chen(陈单), Defu Cai(蔡德福), and Housheng Su(苏厚胜). Chin. Phys. B, 2023, 32(9): 098903.
[3] Important edge identification in complex networks based on local and global features
Jia-Hui Song(宋家辉). Chin. Phys. B, 2023, 32(9): 098901.
[4] Stability and multistability of synchronization in networks of coupled phase oscillators
Yun Zhai(翟云), Xuan Wang(王璇), Jinghua Xiao(肖井华), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2023, 32(6): 060503.
[5] Identification of key recovering node for spatial networks
Zijian Yan(严子健), Yongxiang Xia(夏永祥), Lijun Guo(郭丽君), Lingzhe Zhu(祝令哲), Yuanyuan Liang(梁圆圆), and Haicheng Tu(涂海程). Chin. Phys. B, 2023, 32(6): 068901.
[6] AG-GATCN: A novel method for predicting essential proteins
Peishi Yang(杨培实), Pengli Lu(卢鹏丽), and Teng Zhang(张腾). Chin. Phys. B, 2023, 32(5): 058902.
[7] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[8] SLGC: Identifying influential nodes in complex networks from the perspectives of self-centrality, local centrality, and global centrality
Da Ai(艾达), Xin-Long Liu(刘鑫龙), Wen-Zhe Kang(康文哲), Lin-Na Li(李琳娜), Shao-Qing Lü(吕少卿), and Ying Liu(刘颖). Chin. Phys. B, 2023, 32(11): 118902.
[9] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[10] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[11] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[12] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[13] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[14] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[15] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
No Suggested Reading articles found!