Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 023202    DOI: 10.1088/1674-1056/ad9911
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Relativistic hyperpolarizabilities of atomic H, Li, and Be+ systems

Shan-Shan Lu(卢闪闪)1,2, Hong-Yuan Zheng(郑弘远)1,2, Zong-Chao Yan(严宗朝)3,1, James F. Babb4, and Li-Yan Tang(唐丽艳)1,†
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Department of Physics, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada;
4 ITAMP, Center for Astrophysics|Harvard & Smithsonian, 60 Garden St., Cambridge, MA 02138, USA
Abstract  For atoms in external electric fields, the hyperpolarizabilities are the coefficients describing the nonlinear interactions contributing to the induced energies at the fourth power of the applied electric fields. Accurate evaluations of these coefficients for various systems are crucial for improving precision in advanced atom-based optical lattice clocks and for estimating field-induced effects in atoms for quantum information applications. However, there is a notable scarcity of research on atomic hyperpolarizabilities, especially in the relativistic realm. Our work addresses this gap by establishing a novel set of alternative formulas for the hyperpolarizability based on the fourth-order perturbation theory. These formulas offer a more reasonable regrouping of scalar and tensor components compared to previous formulas, thereby enhancing their correctness and applicability. To validate our formulas, we perform the calculations for the ground and low-lying excited pure states of few-electron atoms H, Li, and Be$^+$. The highly accurate results obtained for the H atom could serve as benchmarks for further development of other theoretical methods.
Keywords:  hyperpolarizabilities      Stark effect      fourth-order perturbation      few-electron atoms  
Received:  06 October 2024      Revised:  13 November 2024      Accepted manuscript online:  02 December 2024
PACS:  32.60.+i (Zeeman and Stark effects)  
  32.10.Dk (Electric and magnetic moments, polarizabilities)  
  31.15.xp (Perturbation theory)  
  31.15.ac (High-precision calculations for few-electron (or few-body) atomic systems)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12174402 and 12393821), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB0920100 and XDB0920101), and the Nature Science Foundation of Hubei Province (Grant Nos. 2019CFA058 and 2022CFA013). ZCY was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC). JFB was supported in part by NSF grant PHY-2116679. All the calculations are finished on the APM-Theoretical Computing Cluster (APMTCC).
Corresponding Authors:  Li-Yan Tang     E-mail:  lytang@apm.ac.cn

Cite this article: 

Shan-Shan Lu(卢闪闪), Hong-Yuan Zheng(郑弘远), Zong-Chao Yan(严宗朝), James F. Babb, and Li-Yan Tang(唐丽艳) Relativistic hyperpolarizabilities of atomic H, Li, and Be+ systems 2025 Chin. Phys. B 34 023202

[1] Mitroy J, Safronova M S and Clark Charles W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 202001
[2] Tang L Y, Zhang Y H, Zhang X Z, Jiang J and Mitroy J 2012 Phys. Rev. A 86 012505
[3] Zhang Y H, Tang L Y, Zhang X Z and Shi T Y 2015 Phys. Rev. A 92 012515
[4] Zhang Y H, Tang L Y, Zhang X Z and Shi T Y 2016 Chin. Phys. B 25 103101
[5] Tang L Y, Yan Z C, Shi T Y and Mitroy J 2010 Phys. Rev. A 81 042521
[6] Bishop D M and Pipin J 1995 Chem. Phys. Lett. 236 15
[7] Thakkar A J and Lupinetti C 2006 Atomic, Molecules and Clusters in Electric Field: Theoretical Approaches to the Calculation of Electric Polarizability, edited by G. Maroulis (London: Imperial College)
[8] Shelton D P and Rice J E 1994 Chem. Rev. 94 3
[9] Manakov N L, Marmo S I and Fainshtein A G 1986 Zh. Eksp. Teor. Fiz. 91 51
[10] Manakov N L, Ovsiannikov V D and Rapoport L P 1986 Phys. Rep. 141 320
[11] Henson B M, Ross J A, Thomas K F, Kuhn C N, Shin D K, Hodgman S S, Zhang Y H, Tang L Y, Drake GWF, Bondy A T, Truscott A G and Baldwin K G H 2022 Science 376 199
[12] Yang J, He X, Guo R, Xu P, Wang K, Sheng C, Liu M, Wang J, Derevianko A and Zhan M 2016 Phys. Rev. Lett. 117 123201
[13] Sheng C, He X, Xu P, Guo R, Wang K, Xiong Z, Liu M, Wang J and Zhan M 2018 Phys. Rev. Lett. 121 240501
[14] Guo R, He X, Sheng C, Yang J, Xu P, Wang K, Zhong J, Liu M, Wang J and Zhan M 2020 Phys. Rev. Lett. 124 153201
[15] Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, Mc- Nally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L and Ye J 2015 Nat. Commun. 6 6896
[16] Brown R C, Phillips N B, Beloy K, McGrewWF, Schioppo M, Fasano R J, Milani G, Zhang X, Hinkley N, Leopardi H, Yoon T H, Nicolodi D, Fortier T M and Ludlow A D 2017 Phys. Rev. Lett. 119 253001
[17] Ushijima I, Takamoto M and Katori H 2018 Phys. Rev. Lett. 121 263202
[18] Kim K, Aeppli A, Bothwell T and Ye J 2023 Phys. Rev. Lett. 130 113203
[19] Bohorquez J C, Chinnarasu R, Isaacs J, Booth D, Beck M, McDermott R and Saffman M 2023 Phys. Rev. A 108 022805
[20] Tang L Y, Yan Z C, Shi T Y and Babb James F 2009 Phys. Rev. A 79 062712
[21] Jhanwar B L and Meath W J 1980 Mol. Phys. 40 713
[22] Tang L Y, Zhang J Y, Yan Z C, Shi T Y, Babb James F and Mitroy J 2009 Phys. Rev. A 80 042511
[23] Tiesinga E, Mohr P J, Newell D B and Taylor B N 2021 Rev. Mod. Phys. 93 025010
[24] S. Kaneko 1977 J. Phys. B: Atom. Mol. Phys. 10 3347
[25] Johnson W R, Blundell S A and Sapirstein J 1988 Phys. Rev. A 37 307
[26] Fischer C F and Parpia F A 1993 Phys. Lett. A 179 198
[27] Bachau H, Cormier E, Decleva P, Hansen J E and Martín F 2001 Rep. Prog. Phys. 64 1815
[28] Chodos A, Jaffe R L, Johnson K, Thorn C B and Weisskopf V F 1974 Phys. Rev. D 9 3471
[29] Bethe H A and Salpeter E E 1977 Quantum Mechanics of One- and Two-Electron Atoms (New York: Plenum)
[30] Tang Y B, Qiao H X, Shi T Y and Mitroy J 2013 Phys. Rev. A 87 042517
[31] Jiang J, Mitroy J, Cheng Y and Bromley Michael W J 2016 Phys. Rev. A 94 062514
[32] Wu F F, Tang Y B, Shi T Y and Tang L Y 2019 Phys. Rev. A 100 042514
[33] JohnsonWR, Kolb D and Huang K N 1983 At. Data Nucl. Data Tables 28 333
[34] Bishop D M and Pipin J 1992 J. Chem. Phys. 97 3375
[35] Cohen S and Themelis S I 2006 J. Chem. Phys. 124 134106
[36] Kramida A, Ralchenko Yu, Reader J and NIST ASD Team 2023 NIST Atomic Spectra Database (version 5.11) https://physics.nist.gov/asd
[37] Barakhshan P, Marrs A, Bhosale A, Arora B, Eigenmann R and Safronova M S 2022 Portal for High-Precision Atomic Data and Computation (version 2.0) https://www.udel.edu/atom
[38] Safronova U I and Safronova M S 2013 Phys. Rev. A 87 032502
[39] Kolb D, Johnson W R and Shorer P 1982 Phys. Rev. A 26 19
[40] Singh S, Kaur M, Arora B and Sahoo B K 2018 Phys. Rev. A 98 013406
[1] Realization of robust Ohmic contact for semiconducting black arsenic by coupling with graphene
Xinjuan Cheng(程新娟) and Xuechao Zhai(翟学超)†. Chin. Phys. B, 2025, 34(2): 027402.
[2] Valley-selective manipulation of moiré excitons through optical Stark effect
Chenran Xu(徐晨燃), Jichen Zhou(周纪晨), Zhexu Shan(单哲旭), Wenjian Su(苏文健), Kenji Watanabe, Takashi Taniguchi, Dawei Wang(王大伟), and Yanhao Tang(汤衍浩). Chin. Phys. B, 2025, 34(1): 017102.
[3] Exciton-polaritons in a 2D hybrid organic-inorganic perovskite microcavity with the presence of optical Stark effect
Kenneth Coker, Chuyuan Zheng(郑楚媛), Joseph Roger Arhin, Kwame Opuni-Boachie Obour Agyekum, and Weili Zhang(张伟利). Chin. Phys. B, 2024, 33(3): 037102.
[4] Mixed-field effect at the hyperfine level of 127I79Br in its rovibronic ground state: Toward field manipulation of cold molecules
Zhengbin Bao(包正斌), Defu Wang(王得富), Xuping Shao(邵旭萍),Yunxia Huang(黄云霞), and Xiaohua Yang(杨晓华). Chin. Phys. B, 2023, 32(12): 123302.
[5] Formation of high-density cold molecules via electromagnetic trap
Ya-Bing Ji(纪亚兵), Bin Wei(魏斌), Heng-Jiao Guo(郭恒娇), Qing Liu(刘青), Tao Yang(杨涛), Shun-Yong Hou(侯顺永), and Jian-Ping Yin(印建平). Chin. Phys. B, 2022, 31(10): 103201.
[6] Hyperfine structures and the field effects of IBr molecule in its rovibronic ground state
Defu Wang(王得富), Xuping Shao(邵旭萍), Yunxia Huang(黄云霞), Chuanliang Li(李传亮), and Xiaohua Yang(杨晓华). Chin. Phys. B, 2021, 30(11): 113301.
[7] Ellipticity-dependent ionization yield for noble atoms
Hristina Deliba?i?, Violeta Petrovi?. Chin. Phys. B, 2019, 28(8): 083201.
[8] Laser-assisted Stark deceleration of CaF in its rovibronic ground (high-field-seeking) state
Yuefeng Gu(顾跃凤), Kai Chen(陈凯), Yunxia Huang(黄云霞), Xiaohua Yang(杨晓华). Chin. Phys. B, 2019, 28(4): 043702.
[9] Quantum photodetachment of hydrogen negative ion in a harmonic potential subjected to static electric field
Azmat Iqbal, Kiran Humayun, Sana Maqsood, Saba Jawaid, Afaq Ahmad, Amin Ur Rahman, Bakht Amin Bacha. Chin. Phys. B, 2019, 28(2): 023201.
[10] Stark effect of the hyperfine structure of ICl in its rovibronic ground state: Towards further molecular cooling
Qing-Hui Wang(王庆辉), Xu-Ping Shao(邵旭萍), Xiao-Hua Yang(杨晓华). Chin. Phys. B, 2016, 25(1): 013301.
[11] Balmer-alpha and Balmer-beta Stark line intensity profiles for high-power hydrogen inductively coupled plasmas
Wang Song-Bai (王松柏), Lei Guang-Jiu (雷光玖), Liu Dong-Ping (刘东平), Yang Si-Ze (杨思泽). Chin. Phys. B, 2014, 23(7): 075201.
[12] Nonlinear spectroscopy of barium in parallel electric and magnetic fields
Yang Hai-Feng (杨海峰), Gao Wei (高伟), Cheng Hong (成红), Liu Hong-Ping (刘红平). Chin. Phys. B, 2014, 23(10): 103201.
[13] Effects of prestrained InGaN interlayer on the emission properties of InGaN/GaN multiple quantum wells in a laser diode structure
Cao Wen-Yu (曹文彧), He Yong-Fa (贺永发), Chen Zhao (陈钊), Yang Wei (杨薇), Du Wei-Min (杜为民), Hu Xiao-Dong (胡晓东). Chin. Phys. B, 2013, 22(7): 076803.
[14] Stark spectrum of barium in highly excited Rydberg states
Yang Hai-Feng (杨海峰), Gao Wei (高伟), Cheng Hong (成红), Liu Xiao-Jun (柳晓军), Liu Hong-Ping (刘红平). Chin. Phys. B, 2013, 22(1): 013202.
[15] Screening influence on the Stark effect of impurity states in strained wurtzite GaN/AlxGa1-xN heterojunctions under pressure
Zhang Min(张敏) and Ban Shi-Liang(班士良) . Chin. Phys. B, 2009, 18(12): 5437-5442.
No Suggested Reading articles found!