Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 010306    DOI: 10.1088/1674-1056/ad8fa3
GENERAL Prev   Next  

Topological states constructed by two different trivial quantum wires

Jing-Run Lin(林景润), Linxi Lv(吕林喜), and Zheng-Wei Zuo(左正伟)†
School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471023, China
Abstract  The topological states of the two-leg and three-leg ladders formed by two trivial quantum wires with different lattice constants are theoretically investigated. Firstly, we take two trivial quantum wires with a lattice constant ratio of 1:2 as an example. For the symmetric nearest-neighbor intra-chain hopping two-leg ladder, the inversion symmetry protected topological insulator phase with two degenerate topological edge states appears. When the inversion symmetry is broken, the topological insulators with one or two topological edge states of different energies and topological metals with edge states embedded in the bulk states could emerge depending on the filling factor. The topological origin of these topological states in the two-leg ladders is the topological properties of the Chern insulators and Chern metals. According to the arrangement of two trivial quantum wires, we construct two types of three-leg ladders. Each type of the three-leg ladder could be divided into one trivial subspace and one topological nontrivial subspace by unitary transformation. The topological nontrivial subspace corresponds to the effective two-leg ladder model. As the filling factor changes, the system could be in topological insulators or topological metals phases. When the two-leg ladder is constructed by two trivial quantum wires with a lattice constant ratio of 1:3 and 2:3, the system could also realize rich topological states such as the topological insulators and topological metals with the topological edge states. These rich topological states in the two-leg and three-leg ladders could be confirmed by current experimental techniques.
Keywords:  trivial quantum wire      topological invariant      inversion symmetric topological insulator      Chern metal  
Received:  11 October 2024      Revised:  31 October 2024      Accepted manuscript online:  07 November 2024
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  73.43.-f (Quantum Hall effects)  
  03.65.-w (Quantum mechanics)  
  02.10.Ox (Combinatorics; graph theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074101 and 11604081). Z W Zuo is also sponsored by the Natural Science Foundation of Henan Province, China (Grant No. 212300410040).
Corresponding Authors:  Zheng-Wei Zuo     E-mail:  zuozw@haust.edu.cn

Cite this article: 

Jing-Run Lin(林景润), Linxi Lv(吕林喜), and Zheng-Wei Zuo(左正伟) Topological states constructed by two different trivial quantum wires 2025 Chin. Phys. B 34 010306

[1] Berezinskii V L 1971 Sov. Phys. JETP 32 493
[2] Berezinskii V L 1971 Sov. Phys. JETP 34 610
[3] Kosterlitz J M and Thouless D J 1972 J. Phys. C Solid State Phys. 5 L124
[4] Kosterlitz J M and Thouless D J 1973 J. Phys. C: Solid State Phys. 6 1181
[5] Kosterlitz J M 1974 J. Phys. C: Solid State Phys 7 1046
[6] Klitzing K V, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
[7] Tsui D C, Stormer H L and Gossard A C 1982 Phys. Rev. Lett. 48 1559
[8] Asbóth J K, Oroszlány L and Pályi A 2016 A short course on topological insulators (Berlin: Springer)
[9] Bernevig B A and Hughes T L 2013 Topological insulators and topological superconductors (Princeton: Princeton University Press)
[10] Moessner R and Moore J E 2021 Topological Phases of Matter (Cambridge: Cambridge University Press)
[11] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[12] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[13] Elliott S R and Franz M 2015 Rev. Mod. Phys. 87 137
[14] Wen X G 2017 Rev. Mod. Phys. 89 041004
[15] Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O and Carusotto I 2019 Rev. Mod. Phys. 91 015006
[16] Zhu W, Deng W, Liu Y, Lu J, Wang H X, Lin Z K, Huang X, Jiang J H and Liu Z 2023 Rep. Prog. Phys. 86 106501
[17] Benalcazar W A, Bernevig B A and Hughes T L 2017 Science 357 61
[18] Benalcazar W A, Bernevig B A and Hughes T L 2017 Phys. Rev. B 96 245115
[19] Bergholtz E J, Budich J C and Kunst F K 2021 Rev. Mod. Phys. 93 015005
[20] Arkinstall J, Teimourpour M H, Feng L, El-Ganainy R and Schomerus H 2017 Phys. Rev. B 95 165109
[21] Kremer M, Petrides I, Meyer E, Heinrich M, Zilberberg O and Szameit A 2020 Nat. Commun. 11 907
[22] Ezawa M 2020 Phys. Rev. Research 2 033397
[23] Cook A M and Moore J E 2022 Commun. Phys. 5 262
[24] Pal A, Winter J H and Cook A M 2024 Phys. Rev. B 109 035147
[25] Pal A, Winter J H and Cook A M 2024 Phys. Rev. B 109 014516
[26] Su W P, Schrieffer J R and Heeger A J 1979 Phys. Rev. Lett. 42 1698
[27] Lin L, Ke Y and Lee C 2021 Phys. Rev. B 103 224208
[28] Liu S N, Zhang G Q, Tang L Z and Zhang D W 2022 Phys. Lett. A 431 128004
[29] Li L, Xu Z and Chen S 2014 Phys. Rev. B 89 085111
[30] Mondragon-Shem I, Hughes T L, Song J and Prodan E 2014 Phys. Rev. Lett. 113 046802
[31] Song J and Prodan E 2014 Phys. Rev. B 89 224203
[32] Liu J S, Han Y Z and Liu C S 2019 Chin. Phys. B 28 100304
[33] Zuo Z W and Kang D 2022 Phys. Rev. A 106 013305
[34] Fraxanet J, Bhattacharya U, Grass T, Rakshit D, Lewenstein M and Dauphin A 2021 Phys. Rev. Research 3 013148
[35] Ganeshan S, Sun K and Das Sarma S 2013 Phys. Rev. Lett. 110 180403
[36] Lang L J, Cai X and Chen S 2012 Phys. Rev. Lett. 108 220401
[37] Choi S J and Trauzettel B 2023 Phys. Rev. B 107 245409
[38] Jangjan M and Hosseini M V 2020 Sci. Rep. 10 14256
[39] Wang H, Shao L, Pan Y, Shen R, Sheng L and Xing D 2016 Phys. Lett. A 380 3936
[40] Kane C L, Mukhopadhyay R and Lubensky T C 2002 Phys. Rev. Lett. 88 036401
[41] Teo J C Y and Kane C L 2014 Phys. Rev. B 89 085101
[42] Klinovaja J and Loss D 2014 Eur. Phys. J. B 87 171
[43] Seroussi I, Berg E and Oreg Y 2014 Phys. Rev. B 89 104523
[44] Mong R S K, Clarke D J, Alicea J, Lindner N H, Fendley P, Nayak C, Oreg Y, Stern A, Berg E, Shtengel K and Fisher M P A 2014 Phys. Rev. X 4 011036
[45] Sagi E and Oreg Y 2014 Phys. Rev. B 90 201102
[46] Klinovaja J, Tserkovnyak Y and Loss D 2015 Phys. Rev. B 91 085426
[47] Meng T, Neupert T, Greiter M and Thomale R 2015 Phys. Rev. B 91 241106
[48] Gorohovsky G, Pereira R G and Sela E 2015 Phys. Rev. B 91 245139
[49] Zhang S B, Liu X, Hossain M S, Yin J X, Hasan M Z and Neupert T 2023 Phys. Rev. Lett. 130 106203
[50] Meng T 2015 Phys. Rev. B 92 115152
[51] Zhou L 2020 Entropy 22 746
[52] Wu C, Yang Z, Tang J, Liu N and Chen G 2022 Phys. Rev. A 106 062206
[53] Zhang S M, He T Y and Jin L 2024 Chin. Phys. Lett. 41 027201
[54] Liang H Q and Li L 2022 Chin. Phys. B 31 010310
[55] Zuo Z W, Lv L and Kang D 2023 Phys. Rev. B 107 195142
[56] Hughes T L, Prodan E and Bernevig B A 2011 Phys. Rev. B 83 245132
[57] Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005
[58] Alvarez V M M and Coutinho-Filho M D 2019 Phys. Rev. A 99 013833
[59] Cook A M and Paramekanti A 2014 Phys. Rev. Lett. 113 077203
[60] Molina M I 2015 Phys. Rev. A 92 063813
[61] Real B, Cantillano C, López-González D, Szameit A, Aono M, Naruse M, Kim S J, Wang K and Vicencio R A 2017 Sci. Rep. 7 15085
[62] Huda M N, Kezilebieke S and Liljeroth P 2020 Phys. Rev. Research 2 043426
[63] Cáceres-Aravena G, Real B, Guzmán-Silva D, Amo A, Foa Torres L E F and Vicencio R A 2022 Phys. Rev. Research 4 013185
[64] Pratama F R and Nakanishi T 2024 arXiv: 2406.17914 [cond-mat]
[65] Pratama F R and Nakanishi T 2024 arXiv: 2406.17919 [cond-mat]
[66] Bunimovich L and Webb B 2014 Isospectral Transformations: A New Approach to Analyzing Multidimensional Systems and Networks (Berlin: Springer)
[67] Smith D and Webb B 2019 Physica A 514 855
[68] Röntgen M, Pyzh M, Morfonios C, Palaiodimopoulos N, Diakonos F and Schmelcher P 2021 Phys. Rev. Lett. 126 180601
[69] Röntgen M, Morfonios C, Schmelcher P and Pagneux V 2023 Phys. Rev. Lett. 130 077201
[70] Röntgen M, Chen X, Gao W, Pyzh M, Schmelcher P, Pagneux V, Achilleos V and Coutant A 2024 Phys. Rev. B 110 035106
[71] Rice M J and Mele E J 1982 Phys. Rev. Lett. 49 1455
[72] Kuno Y 2019 Eur. Phys. J. B 92 195
[73] Qi L, Xing Y, Zhao X D, Liu S, Zhang S, Hu S and Wang H F 2021 Phys. Rev. B 103 085129
[74] Hayward A L C, Bertok E, Schneider U and Heidrich-Meisner F 2021 Phys. Rev. A 103 043310
[75] Allen R E J, Gibbons H V, Sherlock A M, Stanfield H RMand McCann E 2022 Phys. Rev. B 106 165409
[76] Timmel A and Mele E J 2020 Phys. Rev. Lett. 125 166803
[77] Li X, Li X and Das Sarma S 2017 Phys. Rev. B 96 085119
[78] Vu D and Das Sarma S 2021 Phys. Rev. Lett. 126 036803
[79] ShangWC, Han Y N, Endo S and Gao C 2024 Chin. Phys. B 33 80202
[1] Topological phases and edge modes of an uneven ladder
Wen-Chuang Shang(商文创), Yi-Ning Han(韩熠宁), Shimpei Endo, and Chao Gao(高超). Chin. Phys. B, 2024, 33(8): 080202.
[2] Multiple surface states, nontrivial band topology, and antiferromagnetism in GdAuAl4Ge2
Chengcheng Zhang(张成成), Yuan Wang(王渊), Fayuan Zhang(张发远), Hongtao Rong(戎洪涛), Yongqing Cai(蔡永青), Le Wang(王乐), Xiao-Ming Ma(马小明), Shu Guo(郭抒), Zhongjia Chen(陈仲佳), Yanan Wang(王亚南), Zhicheng Jiang(江志诚), Yichen Yang(杨逸尘), Zhengtai Liu(刘正太), Mao Ye(叶茂), Junhao Lin(林君浩), Jiawei Mei(梅佳伟), Zhanyang Hao(郝占阳), Zijuan Xie(谢子娟), and Chaoyu Chen(陈朝宇). Chin. Phys. B, 2023, 32(7): 077401.
[3] Probe of topological invariants using quantum walks of a trapped ion in coherent state space
Ya Meng(蒙雅), Feng Mei(梅锋), Gang Chen(陈刚), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(7): 070501.
[4] A new way to construct topological invariants of non-Hermitian systems with the non-Hermitian skin effect
J S Liu(刘建森), Y Z Han(韩炎桢), C S Liu(刘承师). Chin. Phys. B, 2020, 29(1): 010302.
[5] SymTopo:An automatic tool for calculating topological properties of nonmagnetic crystalline materials
Yuqing He(贺雨晴), Yi Jiang(蒋毅), Tiantian Zhang(张田田), He Huang(黄荷), Chen Fang(方辰), Zhong Jin(金钟). Chin. Phys. B, 2019, 28(8): 087102.
[6] Quantum spin Hall insulators in chemically functionalized As (110) and Sb (110) films
Xiahong Wang(王夏烘), Ping Li(李平), Zhao Ran(冉召), Weidong Luo(罗卫东). Chin. Phys. B, 2018, 27(8): 087305.
[7] Topologically protected edge gap solitons of interacting Bosons in one-dimensional superlattices
Xi-Hua Guo(郭西华), Tian-Fu Xu(徐天赋), Cheng-Shi Liu(刘承师). Chin. Phys. B, 2018, 27(6): 060307.
[8] Static and dynamic properties of polymer brush with topological ring structures: Molecular dynamic simulation
Wu-Bing Wan(万吴兵), Hong-Hong Lv(吕红红), Holger Merlitz(候格), Chen-Xu Wu(吴晨旭). Chin. Phys. B, 2016, 25(10): 106101.
No Suggested Reading articles found!