Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 070304    DOI: 10.1088/1674-1056/ad3dd5
GENERAL Prev   Next  

Verifying hierarchical network nonlocality in general quantum networks

Shu-Yuan Yang(杨舒媛), Jin-Chuan Hou(侯晋川), and Kan He(贺衎)†
College of Mathematics, Taiyuan University of Technology, Taiyuan 030024, China
Abstract  Recently, a class of innovative notions on quantum network nonlocality (QNN), called full quantum network nonlocality (FQNN), have been proposed in Phys. Rev. Lett. 128 010403 (2022). As the generalization of full network nonlocality (FNN), $l$-level quantum network nonlocality ($l$-QNN) was defined in arxiv. 2306.15717 quant-ph (2024). FQNN is a NN that can be generated only from a network with all sources being non-classical. This is beyond the existing standard network nonlocality, which may be generated from a network with only a non-classical source. One of the challenging tasks is to establish corresponding Bell-like inequalities to demonstrate the FQNN or $l$-QNN. Up to now, the inequality criteria for FQNN and $l$-QNN have only been established for star and chain networks. In this paper, we devote ourselves to establishing Bell-like inequalities for networks with more complex structures. Note that star and chain networks are special kinds of tree-shaped networks. We first establish the Bell-like inequalities for verifying $l$-QNN in $k$-forked tree-shaped networks. Such results generalize the existing inequalities for star and chain networks. Furthermore, we find the Bell-like inequality criteria for $l$-QNN for general acyclic and cyclic networks. Finally, we discuss the demonstration of $l$-QNN in the well-known butterfly networks.
Keywords:  full network nonlocality      hierarchical network nonlocality      tree network  
Received:  26 February 2024      Revised:  31 March 2024      Accepted manuscript online:  12 April 2024
PACS:  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
  03.65.-w (Quantum mechanics)  
  03.65.Aa (Quantum systems with finite Hilbert space)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12271394 and 12071336) and the Key Research and Development Program of Shanxi Province (Grant No. 202102010101004).
Corresponding Authors:  Kan He     E-mail:  hekanquantum@163.com

Cite this article: 

Shu-Yuan Yang(杨舒媛), Jin-Chuan Hou(侯晋川), and Kan He(贺衎) Verifying hierarchical network nonlocality in general quantum networks 2024 Chin. Phys. B 33 070304

[1] Branciard C, Gisin N and Pironio S 2010 Phys. Rev. Lett. 104 170401
[2] Branciard C, Rosset D, Gisin N and Pironio S 2012 Phys. Rev. A 85 032119
[3] Mukherjee K, Paul B and Sarkar D 2015 Quantum Inf. Process. 14 2025
[4] Amit K, Mostak K M, Indrani C and Debasis S 2020 Phys. Rev. 102 052222
[5] Tavakoli A, Skrzypczyk P, Cavalcanti D and Acín A 2014 Phys. Rev. A 90 062109
[6] Andreoli F, Carvacho G, Santodonato L, Chaves R and Sciarrino F 2017 New J. Phys. 19 113020
[7] Renou M O, Baumer E, Boreiri S, Brunner N, Gisin N and Beigi S 2019 Phys. Rev. Lett. 123 140401
[8] Jing B, Wang X J, Yu Y, Sun P F, Jiang Y, Yang S J, Jiang W H and Luo X Y 2019 Nat. Photon. 13 210
[9] Yang L H, Qi X F and Hou J C 2021 Phys. Rev. A 104 042405
[10] Yang L H, Qi X F and Hou J C 2022 Entropy 24 691
[11] Yang L H, Qi X F and Hou J C 2022 Quantum Inf. Process. 21 305
[12] Chaves R 2016 Phys. Rev. Lett. 116 010402
[13] Rosset D, Branciard C, Barnea T J, Putz G, Brunner N and Gisin N 2016 Phys. Rev. Lett. 116 010403
[14] Tavakoli A 2016 Phys. Rev. A 93 030101
[15] Luo M X 2018 Phys. Rev. Lett. 120 140402
[16] Branciard C, Brunner N, Buhrman H, Cleve R, Gisin N, Portmann S, Rosset D and Szegedy M 2012 Phys. Rev. Lett. 109 100401
[17] Pozas-Kerstjens A, Gisin N and Tavakoli A 2022 Phys. Rev. Lett. 128 010403
[18] Håkansson E, Piveteau A, Muhammad S and Bourennane M 2022 arXiv:2201.06361 [quant-ph]
[19] Huang C X, Hu X M, Guo Y, Zhang C, Liu B H, Huang Y F, Li C F, Guo G C, Gisin N, Branciard C and Tavakoli A 2022 Phys. Rev. Lett. 129 030502)
[20] Wang N N, Pozas-Kerstjens A, Zhang C, Liu B H, Huang Y F, Li C F, Guo G C, Gisin N and Tavakoli A 2023 Nat. Commun. 14 2153
[21] Gu X M, Huang L, Pozas-Kerstjens A, Jiang Y F, Wu D, Bai B, Sun Q C, Chen M C, Zhang J, Yu S, Zhang Q, Lu C Y and Pan J W 2023 Phys. Rev. Lett. 130 190201
[22] Luo M X, Yang X and Pozas-Kerstjens A 2024 arXiv:2306.15717v3 [quant-ph]
[23] Cubitt T S, Leung D, Matthews W and Winter A 2010 Phys. Rev. Lett. 104 230503
[24] Pan X B, Chen X B, Xu G, Dou Z, Li Z P and Yang Y X 2022 Chin. Phys. B 31 010305
[25] Shi Y Y, Duan L M and Vidal G 2006 Phys. Rev. A 72 022320
[26] Wall M L and D’Aguanno G 2021 Phys. Rev. A 104 042408
[27] Pickston A, Ho J, Ulibarrena A, Grasselli F, Proietti M, Morrison C L, Barrow P, Graffitti F and Fedrizzi A 2023 npj Quantum Inf. 9 82
[28] Moreno M G M, Brito S, Nery R V and Chaves R 2020 Phys. Rev. A 101 052339
[29] Luo M X 2022 Phys. Rev Res. 4 013203
[1] New construction of mutually unbiased bases for odd-dimensional state space
Chenghong Wang(王成红), Kun Wang(王昆), and Zhu-Jun Zheng(郑驻军). Chin. Phys. B, 2024, 33(8): 080304.
[2] Effects of quantum noise on teleportation of arbitrary two-qubit state via five-particle Brown state
Ao Wang(汪澳), Yu-Zhen Wei(魏玉震), Min Jiang(姜敏), Yong-Cheng Li(李泳成), Hong Chen(陈虹), and Xu Huang(黄旭). Chin. Phys. B, 2024, 33(8): 080307.
[3] Security analysis of satellite-to-ground reference-frame-independent quantum key distribution with beam wandering
Chun Zhou(周淳), Yan-Mei Zhao(赵燕美), Xiao-Liang Yang(杨晓亮), Yi-Fei Lu(陆宜飞), Yu Zhou(周雨), Xiao-Lei Jiang(姜晓磊), Hai-Tao Wang(汪海涛), Yang Wang(汪洋), Jia-Ji Li(李家骥), Mu-Sheng Jiang(江木生), Xiang Wang(汪翔), Hai-Long Zhang(张海龙), Hong-Wei Li(李宏伟), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2024, 33(8): 080306.
[4] Improvement and security analysis of multi-ring discrete modulation continuous variable quantum secret sharing scheme
Huan-Yao Jiang(姜欢窈), Min Nie(聂敏), Guang Yang(杨光), Ai-Jing Sun(孙爱晶), Mei-Ling Zhang(张美玲), and Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2024, 33(7): 070303.
[5] General multi-attack detection for continuous-variable quantum key distribution with local local oscillator
Zhuo Kang(康茁), Wei-Qi Liu(刘维琪), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2024, 33(5): 050308.
[6] Cryptanalysis of efficient semi-quantum secret sharing protocol using single particles
Gan Gao(高甘). Chin. Phys. B, 2024, 33(4): 040301.
[7] One-step quantum dialogue
Peng-Hui Zhu(朱鹏辉), Wei Zhong(钟伟), Ming-Ming Du(杜明明), Xi-Yun Li(李喜云), Lan Zhou(周澜), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2024, 33(3): 030302.
[8] Dilation, discrimination and Uhlmann's theorem of link products of quantum channels
Qiang Lei(雷强), Liuheng Cao(操刘桁), Asutosh Kumar, and Junde Wu(武俊德). Chin. Phys. B, 2024, 33(3): 030304.
[9] A new quantum key distribution resource allocation and routing optimization scheme
Lin Bi(毕琳), Xiaotong Yuan(袁晓同), Weijie Wu(吴炜杰), and Shengxi Lin(林升熙). Chin. Phys. B, 2024, 33(3): 030309.
[10] Versatile and controlled quantum teleportation network
Yao-Yao Zhou(周瑶瑶), Peng-Xian Mei(梅鹏娴), Yan-Hong Liu(刘艳红), Liang Wu(吴量), Yan-Xiang Li(李雁翔), Zhi-Hui Yan(闫智辉), and Xiao-Jun Jia(贾晓军). Chin. Phys. B, 2024, 33(3): 034209.
[11] Protected simultaneous quantum remote state preparation scheme by weak and reversal measurements in noisy environments
Mandal Manoj Kumar, Choudhury Binayak S., and Samanta Soumen. Chin. Phys. B, 2024, 33(2): 020309.
[12] Improved decoy-state quantum key distribution with uncharacterized heralded single-photon sources
Le-Chen Xu(徐乐辰), Chun-Hui Zhang(张春辉), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2024, 33(2): 020313.
[13] Research progress in quantum key distribution
Chun-Xue Zhang(张春雪), Dan Wu(吴丹), Peng-Wei Cui(崔鹏伟), Jun-Chi Ma(马俊驰),Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2023, 32(12): 124207.
[14] Blind quantum computation with a client performing different single-qubit gates
Guang-Yang Wu(吴光阳), Zhen Yang(杨振), Yu-Zhan Yan(严玉瞻), Yuan-Mao Luo(罗元茂), Ming-Qiang Bai(柏明强), and Zhi-Wen Mo(莫智文). Chin. Phys. B, 2023, 32(11): 110302.
[15] Deterministic remote preparation of multi-qubit equatorial states through dissipative channels
Liu-Yong Cheng(程留永), Shi-Feng Zhang(张世凤), Zuan Meng(孟钻), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2023, 32(11): 110307.
No Suggested Reading articles found!