Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 076801    DOI: 10.1088/1674-1056/ad3dd2
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Quantum dynamics within curved thin layers with deviation

Run Cheng(程润)1,†, Hao Zhao(赵浩)3, Cui-Bai Luo(罗翠柏)4, Xuan Zhou(周璇)1, Bi-Li Wang(王必利)1, Yan-Biao Li(李延标)1,‡, and Jun Wang(王骏)2,§
1 Physics Department of Basic Department, Army Engineering University of PLA, Nanjing 211101, China;
2 National Laboratory of Solid State Microstructure, Collaborative Innovation Center of Advanced Microstructures, and School of Physics, Nanjing University, Nanjing 210093, China;
3 School of Physics and Electronics, Hunan University, Changsha 410082, China;
4 Department of Physics, Anhui Normal University, Wuhu 241002, China
Abstract  Combining the deviation between thin layers' adjacent surfaces with the confining potential method applied to the quantum curved systems, we derive the effective Schrödinger equation describing the particle constrained within a curved layer, accompanied by a general geometric potential $V_{\rm gq}$ composed of a compression-corrected geometric potential $V_{\rm gq}^{*}$ and a novel potential $V_{\rm gq}^{**}$ brought by the deviation. Applying this analysis to the cylindrical layer emerges two types of deviation-induced geometric potential, resulting from the the cases of slant deviation and tangent deviation, respectively, which strongly renormalizes the purely geometric potential and contribute to the energy spectrum based on a very substantial deepening of bound states they offer.
Keywords:  confining potential method      quantum mechanics      curved thin layer  
Received:  23 February 2024      Revised:  10 April 2024      Accepted manuscript online:  12 April 2024
PACS:  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  03.65.-w (Quantum mechanics)  
  02.40.-k (Geometry, differential geometry, and topology)  
Fund: Project jointly supported by the National Natural Science Foundation of China (Grant No. 11934008). Cheng R was funded by the Fund from National Laboratory of Solid State Microstructure of Nanjing University (Grant Nos. M35040 and M35053) and the Youth Independent Innovation Fund (Grant No. KYJBJKQTZQ23006).
Corresponding Authors:  Run Cheng, Yan-Biao Li, Jun Wang     E-mail:  chengrphy@126.com;liyanbiao@yeah.net;wangj@nju.edu.cn

Cite this article: 

Run Cheng(程润), Hao Zhao(赵浩), Cui-Bai Luo(罗翠柏), Xuan Zhou(周璇), Bi-Li Wang(王必利), Yan-Biao Li(李延标), and Jun Wang(王骏) Quantum dynamics within curved thin layers with deviation 2024 Chin. Phys. B 33 076801

[1] Takahata K 2014 Advances in micro/nano electromechanical systems and fabrication technologies
[2] Prinz V Y, Seleznev V A, Gutakovsky A K, Chehovskiy A V, Preobrazhenskii V V, Putyato M A and Gavrilova T A 2000 Physica E 6 828
[3] Ozaki T, Iwasa Y and Mitani T 2000 Phys. Rev. Lett. 84 1712
[4] Schmidt O G and Eberl K 2001 Nature 410 168
[5] Ortix C and van den Brink J 2010 Phys. Rev. B 81 165419
[6] Ortix C and van den Brink J 2011 Phys. Rev. B 83 113406
[7] Cheng R, Wang Y L, Gao H X, Zhao H, Wang J Q and Zong H S 2020 J. Phys.: Condes. Matter 32 025504
[8] Cheng R, Wang Y L, Zhao H, Ye C Z, Liang G H and Zong H S 2021 Results Phys. 22 103974
[9] Pereira L F C, Andrade F M, Filgueiras C and Silva E O 2021 Physica E 132 114760
[10] Pereira L F C, Andrade F M, Filgueiras C and Silva E O 2022 FewBody Syst. 63 64
[11] Jensen H and Koppe H 1971 Ann. Phys. 63 586
[12] da Costa R C T 1981 Phys. Rev. A 23 1982
[13] Schuster P and Jaffe R 2003 Ann. Phys. 307 132
[14] Liu Q H, Tong C L and M L M 2007 J. Phys. A: Math. Theor. 40 4161
[15] Liu Q H, Tang L H and Xun D M 2011 Phys. Rev. A 84 042101
[16] Cheng R, Wang L, Zhao H, Luo C B, Wang Y L and Wang J 2021 Commun. Theor. Phys. 73 125004
[17] Cheng R, Wang L, Zhao H, Wang Y L and Wang J 2022 Results Phys. 42 105974
[18] Wang Y L, Du L, Xu C T, Liu X J and Zong H S 2014 Phys. Rev. A 90 042117
[19] Szameit A, Dreisow F, Heinrich M, Keil R, Nolte S, Tünnermann A and Longhi S 2010 Phys. Rev. Lett. 104 150403
[20] Songmuang R, Deneke C and Schmidt O 2006 Appl. Phys. Lett. 89 223109
[21] Liang S, Zhang M, Biesold G M, Choi W, He Y, Li Z, Shen D and Lin Z 2021 Adv. Mater. 33 2005888
[22] Zhang F, Yang K, Liu G, Chen Y, Wang M, Li S and Li R 2022 Compos Part A: Appl. Sci. Manuf. 160 107051
[23] Shikakhwa M and Chair N 2022 Eur. Phys. J. Plus 137 560
[24] Wang Y L and Zong H S 2016 Ann. Phys. 364 68
[25] Liang G H and Lai M Y 2023 Phys. Rev. A 107 022213
[26] Goldstone J and Jaffe R L 1992 Phys. Rev. B 45 14100
[27] Ouyang P, Mohta V and Jaffe R 1999 Ann. Phys. 275 297
[28] Santos F, Fumeron S, Berche B and Moraes F 2016 Nanotechnology 27 135302
[29] Cheng R, Wang Y L, Jiang H, Liu X J and Zong H S 2019 Condens. Matter 4 3
[30] Ferrari G and Cuoghi G 2008 Phys. Rev. Lett. 100 230403
[31] Encinosa M and Etemadi B 1998 Phys. Rev. A 58 77
[32] Encinosa M and Mott L 2003 Phys. Rev. A 68 014102
[33] Spittel R, Uebel P, Bartelt H and Schmidt M A 2015 Opt. Express 23 12174
[1] Lorentz quantum computer
Wenhao He(何文昊), Zhenduo Wang(王朕铎), and Biao Wu(吴飙). Chin. Phys. B, 2023, 32(4): 040304.
[2] Optimal driving field for multipartite quantum battery coupled with a common thermal bath
Z Q Yang(杨梓骞), L K Zhou(周立坤), Z Y Zhou(周正阳), G R Jin(金光日), L Cheng(程龙), and X G Wang(王晓光). Chin. Phys. B, 2023, 32(11): 110301.
[3] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[4] Geometry of time-dependent $\mathcal{PT}$-symmetric quantum mechanics
Da-Jian Zhang(张大剑), Qing-hai Wang(王清海), and Jiangbin Gong(龚江滨). Chin. Phys. B, 2021, 30(10): 100307.
[5] Perspective for aggregation-induced delayed fluorescence mechanism: A QM/MM study
Jie Liu(刘杰), Jianzhong Fan(范建忠), Kai Zhang(张凯), Yuchen Zhang(张雨辰), Chuan-Kui Wang(王传奎), Lili Lin(蔺丽丽). Chin. Phys. B, 2020, 29(8): 088504.
[6] Experimental demonstration of tight duality relation inthree-path interferometer
Zhi-Jin Ke(柯芝锦), Yu Meng(孟雨), Yi-Tao Wang(王轶韬), Shang Yu(俞上), Wei Liu(刘伟), Zhi-Peng Li(李志鹏), Hang Wang(汪航), Qiang Li(李强), Jin-Shi Xu(许金时), Jian-Shun Tang(唐建顺), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2020, 29(5): 050307.
[7] Phase-related noise characteristics of 780 nm band single-frequency lasers used in the cold atomic clock
Xi Zhang(张茜), Fei Yang(杨飞), Zi-Tong Feng(冯子桐), Jie-Jun Zhao(赵洁珺), Fang Wei(魏芳), Hai-Wen Cai(蔡海文), Rong-Hui Qu(瞿荣辉). Chin. Phys. B, 2019, 28(7): 074209.
[8] Optimal phase estimation with photon-number difference measurement using twin-Fock states of light
J H Xu(徐佳慧), J Z Wang(王建中), A X Chen(陈爱喜), Y Li(李勇), G R Jin(金光日). Chin. Phys. B, 2019, 28(12): 120303.
[9] Solvent effects and potential of mean force study of the SN2 reaction of CH3F+CN- in water
Chen Li(李琛), Peng Liu(刘鹏), Yongfang Li(李永方), Dunyou Wang(王敦友). Chin. Phys. B, 2018, 27(3): 033401.
[10] Intrinsic product polarization and branch ratio in theS(1D, 3P)+HD reaction on three electronic states
Lin Li(李琳), Shunle Dong(董顺乐). Chin. Phys. B, 2016, 25(9): 093401.
[11] Approximate solutions of Klein—Gordon equation with improved Manning—Rosen potential in D-dimensions using SUSYQM
A. N. Ikot, H. Hassanabadi, H. P. Obong, Y. E. Chad Umoren, C. N. Isonguyo, B. H. Yazarloo. Chin. Phys. B, 2014, 23(12): 120303.
[12] Transmission time in the reflectionless complex potential
Yin Cheng (殷澄), Wang Xian-Ping (王贤平), Shan Ming-Lei (单鸣雷), Han Qing-Bang (韩庆邦), Zhu Chang-Ping (朱昌平). Chin. Phys. B, 2014, 23(10): 100301.
[13] Solve the spin-weighted spheroidal wave equation
Li Yu-Zhen (李玉祯), Tian Gui-Hua (田贵花), Dong Kun (董锟). Chin. Phys. B, 2013, 22(6): 060203.
[14] The nonrelativistic oscillator strength of a hyperbolic-type potential
H. Hassanabadi, S. Zarrinkamar, B. H. Yazarloo. Chin. Phys. B, 2013, 22(6): 060202.
[15] The Yukawa potential in semirelativistic formulation via supersymmetry quantum mechanics
S. Hassanabadi, M. Ghominejad, S. Zarrinkamar, H. Hassanabadi. Chin. Phys. B, 2013, 22(6): 060303.
No Suggested Reading articles found!