Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 013201    DOI: 10.1088/1674-1056/ad886a
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Optimization strategies for operational parameters of Rydberg atom-based amplitude modulation receiver

Yuhao Wu(吴宇豪), Dongping Xiao(肖冬萍)†, Huaiqing Zhang(张淮清), and Sheng Yan(阎晟)
National Key Laboratory of Power Transmission Equipment Technology, School of Electrical Engineering, Chongqing University, Chongqing 40044, China
Abstract  The Rydberg atom-based receiver, as a novel type of antenna, demonstrates broad application prospects in the field of microwave communications. However, since Rydberg atomic receivers are nonlinear systems, mismatches between the parameters of the received amplitude modulation (AM) signals and the system's linear workspace and demodulation operating points can cause severe distortion in the demodulated signals. To address this, the article proposes a method for determining the operational parameters based on the mean square error (MSE) and total harmonic distortion (THD) assessments and presents strategies for optimizing the system's operational parameters focusing on linear response characteristics (LRC) and linear dynamic range (LDR). Specifically, we employ a method that minimizes the MSE to define the system's linear workspace, thereby ensuring the system has a good LRC while maximizing the LDR. To ensure that the signal always operates within the linear workspace, an appropriate carrier amplitude is set as the demodulation operating point. By calculating the THD at different operating points, the LRC performance within different regions of the linear workspace is evaluated, and corresponding optimization strategies based on the range of signal strengths are proposed. Moreover, to more accurately restore the baseband signal, we establish a mapping relationship between the carrier Rabi frequency and the transmitted power of the probe light, and optimize the slope of the linear demodulation function to reduce the MSE to less than $0.8\times 10^{-4}$. Finally, based on these methods for determining the operational parameters, we explore the effects of different laser Rabi frequencies on the system performance, and provide optimization recommendations. This research provides robust support for the design of high-performance Rydberg atom-based AM receivers.
Keywords:  Rydberg atom-based receiver      amplitude modulation (AM)      operating parameters      optimization  
Received:  13 July 2024      Revised:  21 September 2024      Accepted manuscript online:  18 October 2024
PACS:  32.80.Ee (Rydberg states)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.60.Fc (Modulation, tuning, and mode locking)  
  84.30.Qi (Modulators and demodulators; discriminators, comparators, mixers, limiters, and compressors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. U22B2095) and the Civil Aerospace Technology Research Project (Grant No. D010103).
Corresponding Authors:  Dongping Xiao     E-mail:  xiaodongping@cqu.edu.cn

Cite this article: 

Yuhao Wu(吴宇豪), Dongping Xiao(肖冬萍), Huaiqing Zhang(张淮清), and Sheng Yan(阎晟) Optimization strategies for operational parameters of Rydberg atom-based amplitude modulation receiver 2025 Chin. Phys. B 34 013201

[1] Gallagher T F 1988 Rep. Prog. Phys. 51 143
[2] Anderson D A, Miller S A, Raithel G, Gordon J A, Butler M L and Holloway C L 2016 Phys. Rev. Appl. 5 034003
[3] Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N and Raithel G 2014 IEEE Trans. Antennas Propag. 62 6169
[4] Fan H, Kumar S, Sedlacek J, Kuebler H, Karimkashi S and Shaffer J P 2015 J. Phys. B-At. Mol. Opt. Phys. 48 202001
[5] Simons M T, Gordon J A and Holloway C L 2016 J. Appl. Phys. 120 123103
[6] Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A and Raithel G 2017 J. Appl. Phys. 121 233106
[7] Sedlacek J A, Schwettmann A, Kuebler H, Loew R, Pfau T and Shaffer J P 2012 Nat. Phys. 8 819
[8] Bason M G, Tanasittikosol M, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M and Adams C S 2010 New J. Phys. 12 065015
[9] Jiao Y, Han X, Yang Z, Li J, Raithel G, Zhao J and Jia S 2016 Phys. Rev. A 94 023832
[10] Paradis E, Raithel G and Anderson D A 2019 Phys. Rev. A 100 013420
[11] Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S, Thaicharoen N and Raithel G 2014 Appl. Phys. Lett. 105 024104
[12] Sedlacek J A, Schwettmann A, Kuebler H and Shaffer J P 2013 Phys. Rev. Lett. 111 063001
[13] Jiao Y, Hao L, Han X, Bai S, Raithel G, Zhao J and Jia S 2017 Phys. Rev. Appl. 8 014028
[14] Simons M T, Haddab A H, Gordon J A and Holloway C L 2019 Appl. Phys. Lett. 114 114101
[15] Anderson D A, Sapiro R E, Goncalves L F, Cardman R and Raithel G 2022 Phys. Rev. Appl. 17 044020
[16] Liu X B, Jia F D, Zhang H Y, Mei J, Liang W C, Zhou F, Yu Y H, Liu Y, Zhang J, Xie F and Zhong Z P 2022 Chin. Phys. B 31 090703
[17] Jing M, Hu Y, Ma J, Zhang H, Zhang L, Xiao L and Jia S 2020 Nat. Phys. 16 911
[18] Liao K Y, Tu H T, Yang S Z, Chen C J, Liu X H, Liang J, Zhang X D, Yan H and Zhu S L 2020 Phys. Rev. A 101 053432
[19] Zhou F, Jia F, Liu X, Yu Y, Mei J, Zhang J, Xie F and Zhong Z 2023 J. Phys. B-At. Mol. Opt. Phys. 56 025501
[20] Holloway C L, Prajapati N, Artusio-Glimpse A B, Berweger S, Simons M T, Kasahara Y, Alu A and Ziolkowski R W 2022 Appl. Phys. Lett. 120 204001
[21] Song Z, Liu H, Liu X, Zhang W, Zou H, Zhang J and Qu J 2019 Opt. Express 27 8848
[22] Wade C G, Sibalic N, de Melo N R, Kondo J M, Adams C S and Weatherill K J 2017 Nat. Photonics 11 40
[23] Downes L A, MacKellar A R, Whiting D J, Bourgenot C, Adams C S and Weatherill K J 2020 Phys. Rev. X 10 011027
[24] Yuan J, Jin T, Xiao L, Jia S and Wang L 2023 IEEE Antennas Wirel. Propag. Lett. 22 2580
[25] Jiao Y, Han X, Fan J, Raithel G, Zhao J and Jia S 2019 Appl. Phys. Express 12 126002
[26] Li H, Hu J, Bai J, Shi M, Jiao Y, Zhao J and Jia S 2022 Opt. Express 30 13522
[27] Meyer D H, Cox K C, Fatemi F K and Kunz P D 2018 Appl. Phys. Lett. 112 211108
[28] Holloway C L, Simons M T, Haddab A H, Gordon J A, Anderson D A, Raithel G and Voran S D 2021 IEEE Antennas Propag. Mag. 63 63
[29] Anderson D A, Sapiro R E and Raithel G 2021 IEEE Trans. Antennas Propag. 69 2455
[30] Holloway C L, Simons M T, Gordon J A and Novotny D 2019 IEEE Antennas Wirel. Propag. Lett. 18 1853
[31] Cai M, Xu Z, You S and Liu H 2022 Photonics 9 250
[32] Wu F, An Q, Sun Z and Fu Y 2023 Phys. Rev. A 107 043108
[33] Wu B, Yao J, Wu F, An Q and Fu Y 2024 Chin. Phys. B 33 024205
[34] Prajapati N, Rotunno A P, Berweger S, Simons M T, Artusio-Glimpse A B, Voran S D and Holloway C L 2022 AVS Quantum Sci. 4 035001
[35] Yuan J, Jin T, Yan Y, Xiao L, Jia S and Wang L 2024 EPJ Quantum Technol. 11 2
[36] Yang K, Sun Z, Mao R, Lin Y, Liu Y, An Q and Fu Y 2022 Chin. Opt. Lett. 20 081203
[37] Borowka S, Pylypenko U, Mazelanik M and Parniak M 2022 Appl. Optics 61 8806
[1] Multi-objective global optimization approach predicted quasi-layered ternary TiOS crystals with promising photocatalytic properties
Yi-Jie Xiang(向依婕), Siyan Gao(高思妍), Chunlei Wang(王春雷), Haiping Fang(方海平), Xiangmei Duan(段香梅), Yi-Feng Zheng(郑益峰), and Yue-Yu Zhang(张越宇). Chin. Phys. B, 2024, 33(8): 087101.
[2] Performance optimization of a SERF atomic magnetometer based on flat-top light beam
Ziqi Yuan(袁子琪), Junjian Tang(唐钧剑), Shudong Lin(林树东), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2024, 33(6): 060703.
[3] Quafu-Qcover: Explore combinatorial optimization problems on cloud-based quantum computers
Hong-Ze Xu(许宏泽), Wei-Feng Zhuang(庄伟峰), Zheng-An Wang(王正安), Kai-Xuan Huang(黄凯旋), Yun-Hao Shi(时运豪), Wei-Guo Ma(马卫国), Tian-Ming Li(李天铭), Chi-Tong Chen(陈驰通), Kai Xu(许凯), Yu-Long Feng(冯玉龙), Pei Liu(刘培), Mo Chen(陈墨), Shang-Shu Li(李尚书), Zhi-Peng Yang(杨智鹏), Chen Qian(钱辰), Yu-Xin Jin(靳羽欣), Yun-Heng Ma(马运恒), Xiao Xiao(肖骁), Peng Qian(钱鹏), Yanwu Gu(顾炎武), Xu-Dan Chai(柴绪丹), Ya-Nan Pu(普亚南), Yi-Peng Zhang(张翼鹏), Shi-Jie Wei(魏世杰), Jin-Feng Zeng(增进峰), Hang Li(李行), Gui-Lu Long(龙桂鲁), Yirong Jin(金贻荣), Haifeng Yu(于海峰), Heng Fan(范桁), Dong E. Liu(刘东), and Meng-Jun Hu(胡孟军). Chin. Phys. B, 2024, 33(5): 050302.
[4] Quantum control based on three forms of Lyapunov functions
Guo-Hui Yu(俞国慧) and Hong-Li Yang(杨洪礼). Chin. Phys. B, 2024, 33(4): 040201.
[5] Magnetic diagnostics layout design for CFETR plasma equilibrium reconstruction
Qingze Yu(于庆泽), Yao Huang(黄耀), Zhengping Luo(罗正平), Yuehang Wang(汪悦航), Zijie Liu(刘自结), Wangyi Rui(芮望颐), Kai Wu(吴凯), Bingjia Xiao(肖炳甲), and Jiangang Li(李建刚). Chin. Phys. B, 2024, 33(4): 045201.
[6] MetaPINNs: Predicting soliton and rogue wave of nonlinear PDEs via the improved physics-informed neural networks based on meta-learned optimization
Yanan Guo(郭亚楠), Xiaoqun Cao(曹小群), Junqiang Song(宋君强), and Hongze Leng(冷洪泽). Chin. Phys. B, 2024, 33(2): 020203.
[7] Gray code based gradient-free optimization algorithm for parameterized quantum circuit
Anqi Zhang(张安琪), Chunhui Wu(武春辉), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(2): 020311.
[8] Optimization performance of quantum endoreversible Otto machines with dual-squeezed reservoirs
Haoguang Liu(刘浩广). Chin. Phys. B, 2024, 33(10): 100503.
[9] Ultra-broadband and wide-angle reflective terahertz polarization conversion metasurface based on topological optimization
Ya-Jie Zhang(张亚杰), Chao-Long Li(李潮龙), Jia-Qi Luan(栾迦淇), Ming Zhao(赵茗), Ding-Shan Gao(郜定山), and Pei-Li Li(李培丽). Chin. Phys. B, 2024, 33(10): 104210.
[10] Identifying influential spreaders in social networks: A two-stage quantum-behaved particle swarm optimization with Lévy flight
Pengli Lu(卢鹏丽), Jimao Lan(揽继茂), Jianxin Tang(唐建新), Li Zhang(张莉), Shihui Song(宋仕辉), and Hongyu Zhu(朱虹羽). Chin. Phys. B, 2024, 33(1): 018901.
[11] Intervention against information diffusion in static and temporal coupling networks
Yun Chai(柴允), You-Guo Wang(王友国), Jun Yan(颜俊), and Xian-Li Sun(孙先莉). Chin. Phys. B, 2023, 32(9): 090202.
[12] Algorithm for evaluating distance-based entanglement measures
Yixuan Hu(胡奕轩), Ye-Chao Liu(刘烨超), and Jiangwei Shang(尚江伟). Chin. Phys. B, 2023, 32(8): 080307.
[13] Design of an optically-transparent ultra-broadband microwave absorber
Mian Gao(高冕), Qiang Chen(陈强), Yue-Jun Zheng(郑月军), Fang Yuan(袁方), Zhan-Shan Sun(孙占山), and Yun-Qi Fu(付云起). Chin. Phys. B, 2023, 32(8): 084102.
[14] Probing the effects of lithium doping on structures, properties, and stabilities of magnesium cluster anions
Xiao-Yi Zhang(张小义), Ya-Ru Zhao(赵亚儒), Hong-Xing Li(李红星), Kai-Ge Cheng(成凯格), Zi-Rui Liu(刘子锐), Zhi-Ping Liu(刘芷萍), and Hang He(何航). Chin. Phys. B, 2023, 32(6): 066102.
[15] Designing radiative cooling metamaterials for passive thermal management by particle swarm optimization
Shenshen Yan(闫申申), Yan Liu(刘岩), Zi Wang(王子), Xiaohua Lan(兰晓华), Yi Wang(汪毅), and Jie Ren(任捷). Chin. Phys. B, 2023, 32(5): 057802.
No Suggested Reading articles found!