Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(1): 014203    DOI: 10.1088/1674-1056/ad8cbf
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev  

In-phase collective unconventional photon blockade and its stability in an asymmetrical cavity containing N bosonic atoms

Ying Luo(罗颖)1,2,†, Xinqin Zhang(张新琴)2,†, Yi Xiao(肖祎)2, Jingping Xu(许静平)3, Haozhen Li(李浩珍)4, Yaping Yang(羊亚平)3, and Xiuwen Xia(夏秀文)2,5,3,‡
1 School of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, China;
2 Institute of Atomic and Molecular Physics and Functional Materials, School of Mathematics and Physics, Jinggangshan University, Ji'an 343009, China;
3 MOE Key Laboratory of Advanced Micro-Structure Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China;
4 College of Communication Engineering, Hangzhou Dianzi University, Hangzhou 310018, China;
5 Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou 310027, China
Abstract  We present work on a cavity-driven QED system combining an asymmetrical Fabry-Perot cavity and $N$ two-level atoms (TLAs) and show the convenience of simplifying from distinguishable atoms to undistinguishable bosons when the atoms are prepared in the same initial state. Such simplification is valid even when the atoms are not prepared in the in-phase condition, since any partial in-phase initial state will evolve into the ground state through a relaxation process. Thus, we get a reduced group of differential equations by introducing the Dicke states, and the under-zero Lyapunov exponents verify its stability. We also work out the collective unconventional photon blockade (UCPB) and get two kinds of giant nonreciprocal UCPBs (NUCPBs) in the weak-driving approximation. Results show that we can employ $N$ noninteracting bosonic atoms to generate a collective UCPB instead of a monoatomic UCPB as the UCPB conditions do not vary with the number of atoms. Furthermore, the forward giant NUCPB only occurring for $N$ larger than a certain number as well as the backward giant NUCPB are controllable by the cavity asymmetry and by the number of atoms. Our findings suggest a prospective approach to the generation of quantum nonreciprocity by $N$ identical atoms.
Keywords:  unconventional photon blockade      quantum nonreciprocity      asymmetrical cavity  
Received:  13 September 2024      Revised:  11 October 2024      Accepted manuscript online:  30 October 2024
PACS:  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12164022 and 12174288), Natural Science Foundation of Jiangxi Province of China (Grant No. 20232BAB201044), Scientific Research Foundation of the Education Department of Jiangxi Province of China (Grant No. GJJ211039), and China Postdoctoral Science Foundation (Grant No. 2023M732028).
Corresponding Authors:  Xiuwen Xia     E-mail:  jgsuxxw@126.com

Cite this article: 

Ying Luo(罗颖), Xinqin Zhang(张新琴), Yi Xiao(肖祎), Jingping Xu(许静平), Haozhen Li(李浩珍), Yaping Yang(羊亚平), and Xiuwen Xia(夏秀文) In-phase collective unconventional photon blockade and its stability in an asymmetrical cavity containing N bosonic atoms 2025 Chin. Phys. B 34 014203

[1] Zou F, Zhang X Y, Xu X W, Huang J F and Liao J Q 2020 Phys. Rev. A 102 053710
[2] Zhou Y H, Zhang X Y, Wu Q C, Ye B L, Zhang Z Q, Zou D D, Shen H Z and Yang C P 2020 Phys. Rev. A 102 033713
[3] Shen S, Li J and Wu Y 2020 Phys. Rev. A 101 023805
[4] Liang X, Duan Z, Guo Q, Guan S, Xie M and Liu C 2020 Phys. Rev. A 102 053713
[5] Kyriienko O, Krizhanovskii D N and Shelykh I A 2020 Phys. Rev. Lett. 125 197402
[6] Rabl P 2011 Phys. Rev. Lett. 107 063601
[7] Hoffman A J, Srinivasan S J, Schmidt S, Spietz L, Aumentado J, Türeci H E and Houck A A 2011 Phys. Rev. Lett. 107 053602
[8] Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E and Kimble H J 2005 Nature 436 87
[9] Haider Z, Qamar S and Irfan M 2023 Phys. Rev. A 107 043702
[10] You Y, Jia Z, Chen B, Chen D and Peng Y 2023 Phys. Rev. A 107 053710
[11] Liu Y M, Cheng J, Wang H F and Yi X 2023 Opt. Express 31 12847
[12] Flayac H and Savona V 2017 Phys. Rev. A 96 053810
[13] Flayac H and Savona V 2013 Phys. Rev. A 88 033836
[14] Wang H, Gu X, Liu Y X, Miranowicz A and Nori F 2015 Phys. Rev. A 92 033806
[15] Sarma B and Sarma A K 2018 Phys. Rev. A 98 013826
[16] Gao Y P, Liu X F, Wang T J, Cao C and Wang C 2019 Phys. Rev. A 100 043831
[17] Sarma B and Sarma A K 2017 Phys. Rev. A 96 053827
[18] Zhao D 2018 Phys. Rev. A 98 033834
[19] Vaneph C, Morvan A, Aiello G, Féchant M, Aprili M, Gabelli J and Estève J 2018 Phys. Rev. Lett. 121 043602
[20] Snijders H J, Frey J A, Norman J, Flayac H, Savona V, Gossard A C, Bowers J E, van Exter M P, Bouwmeester D and Löffler W 2018 Phys. Rev. Lett. 121 043601
[21] Cidrim A, do Espirito Santo T S, Schachenmayer J, Kaiser R and Bachelard R 2020 Phys. Rev. Lett. 125 073601
[22] Williamson L A, Borgh M O and Ruostekoski J 2020 Phys. Rev. Lett. 125 073602
[23] Su X, Jin B B, Tang J S and Xia K 2024 Chin. Phys. Lett. 41 074202
[24] Liu X, Tian M Y, Cui X N and Zhang X H 2024 Chin. Phys. B 33 020308
[25] Xia X, Zhang X, Xu J, Li H, Fu Z and Yang Y 2021 Phys. Rev. A 104 063713
[26] Xia X, Zhang X, Xu J, Li H, Fu Z and Yang Y 2022 Opt. Express 30 7907
[27] Zhang X, Xia X, Xu J, Li H, Fu Z and Yang Y 2022 Chin. Phys. B 31 074204
[28] Yang P F, Wang Z H, Fan Q, Yang C, Li G, Zhang P F and Zhang T C 2024 Opt. Express 32 28582
[29] Tufarelli T, Friedrich D, Groß H, Hamm J, Hess O and Hecht B 2021 Phy. Rev. Res. 3 033103
[30] Hou K, Zhu C J, Yang Y P and Agarwal G S 2019 Phys. Rev. A 100 063817
[31] Lemberger B and Mølmer K 2021 Phys. Rev. A 103 033713
[32] Dicke R H 1954 Phy. Rev. 93 99
[33] Xia X, Xu J and Yang Y 2014 Phys. Rev. A 90 043857
[34] Ramasubramanian K and Sriram M S 2000 Physica D 139 72
[1] Manipulation of nonreciprocal unconventional photon blockade in a cavity-driven system composed of an asymmetrical cavity and two atoms with weak dipole-dipole interaction
Xinqin Zhang(张新琴), Xiuwen Xia(夏秀文), Jingping Xu(许静平), Haozhen Li(李浩珍), Zeyun Fu(傅泽云), and Yaping Yang(羊亚平). Chin. Phys. B, 2022, 31(7): 074204.
[2] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
No Suggested Reading articles found!