|
|
Fully relativistic many-body perturbation energies, transition properties, and lifetimes of lithium-like iron Fe XXIV |
Shuang Li(李双)1,2,3,4,†, Min Zhao(赵敏)1, Guo-Qing Liu(刘国庆)1, Chang-Bao Hu(胡昌宝)1, and Guo-Zhu Pan(潘国柱)1 |
1 School of Electrical and Opto-electronic Engineering, West Anhui University, Lu'an 237012, China; 2 College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China; 3 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China; 4 Shanghai EBIT Laboratory, Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433, China |
|
|
Abstract Employing the advanced relativistic configuration interaction (RCI) combined with the many-body perturbation theory (RMBPT) method, we report energies and lifetime values for the lowest 35 energy levels from the (1s$^2$)$nl$ configurations (where the principal quantum number $n = 2$-6 and the angular quantum number $l = 0,\ldots,n-1$) of lithium-like iron Fe XXIV, as well as complete data on the transition wavelengths, radiative rates, absorption oscillator strengths, and line strengths between the levels. Both the allowed (E1) and forbidden (magnetic dipole M1, magnetic quadrupole M2, and electric quadrupole E2) ones are reported. Through detailed comparisons with previous results, we assess the overall accuracies of present RMBPT results to be likely the most precise ones to date. Configuration interaction effects are found to be very important for the energies and radiative properties for the ion. The present RMBPT results are valuable for spectral line identification, plasma modeling, and diagnosing.
|
Received: 20 April 2023
Revised: 27 July 2023
Accepted manuscript online: 11 August 2023
|
PACS:
|
31.15.vj
|
(Electron correlation calculations for atoms and ions: excited states)
|
|
31.15.am
|
(Relativistic configuration interaction (CI) and many-body perturbation calculations)
|
|
31.15.xp
|
(Perturbation theory)
|
|
32.70.Cs
|
(Oscillator strengths, lifetimes, transition moments)
|
|
Fund: Project supported by the Research Foundation for Higher Level Talents of West Anhui University (Grant No. WGKQ2021005). |
Corresponding Authors:
Shuang Li
E-mail: lishuangwuli@126.com
|
Cite this article:
Shuang Li(李双), Min Zhao(赵敏), Guo-Qing Liu(刘国庆), Chang-Bao Hu(胡昌宝), and Guo-Zhu Pan(潘国柱) Fully relativistic many-body perturbation energies, transition properties, and lifetimes of lithium-like iron Fe XXIV 2023 Chin. Phys. B 32 103101
|
[1] Ullmann J, Andelkovic Z and Brandau C, et al. 2017 Nat. Commun. 8 15484 [2] Karr J P 2017 Nat. Phys. 13 533 [3] Zhang G S, Deng B L, Yang J, Tang K, Meng B and Zhang X Q 2023 At. Data Nucl. Data Tables 149 101547 [4] Skripnikov L V, Schmidt S, Ullmann J, et al. 2018 Phys. Rev. Lett. 120 093001 [5] Volotka A V, Glazov D A, Shabaev V M, Tupitsyn I I and Plunien G 2014 Phys. Rev. Lett. 112 253004 [6] Deng B L, Jiang G and Zhang C Y 2014 At. Data Nucl. Data Tables 100 1337 [7] Aggarwal K M and Keenan F P 2013 At. Data Nucl. Data Tables 99 156 [8] Aggarwal K M and Keenan F P 2012 At. Data Nucl. Data Tables 98 1003 [9] Liang G Y and Badnell N R 2011 Astron. Astrophys. 528 A69 [10] Mitra-Kraev U and Del Zanna G 2019 Astron. Astrophys. 628 A134 [11] Neupert W M, Swartz M and Kastner S O 1973 Sol. Phys. 31 171 [12] Boiko V, Faenov A and Pikuz S 1978 J. Quantum Spectrosc. Radiat. Transfer 19 11 [13] Zhang W M, Zhang L, Cheng Y X, Morita S, Wang Z X, Hu A L, Zhang F L, Duan Y M, Zhou T F, Wang S X and Liu H Q 2022 Phys. Scr. 97 045604 [14] Epp S W, López-Urrutia J R C, Brenner G, Mäckel V, Mokler P H, Treusch R, Kuhlmann M, Yurkov M V, Feldhaus J, Schneider J R, Wellhöfer M, Martins M, Wurth W and Ullrich J 2007 Phys. Rev. Lett. 98 183001 [15] Chen H, Gu M F, Behar E, Brown G V, Kahn S M and Beiersdorfer P 2007 Astrophys. J. Suppl. Ser. 168 319 [16] Li W X, Amarsi A M, Papoulia A, Ekman J and Jansson P 2021 Mon. Not. R. Astron. Soc. 502 3780 [17] Zhang D H, Zhang F J, Ding X B and Dong C Z 2021 Chin. Phys. B 30 043102 [18] Zeng J L, Li Y J and Yuan J M 2021 J. Quantum Spectrosc. Radiat. Transfer 272 107777 [19] Liu X, Zhang J C and Wang Z W 2019 Results Phys. 12 398 [20] Santana J A, Peña-Cotto E L, Butler E J M, Beiersdorfer P and Brown V G 2019 Astrophys. J. Suppl. Ser. 245 9 [21] Santana J A, Lopez-Dauphin N A and Beiersdorfer P 2018 Astrophys. J. Suppl. Ser. 234 13 [22] Santana J A, Lopez-Dauphin N A, Butler E J M and Beiersdorfer P 2018 Astrophys. J. Suppl. Ser. 238 34 [23] Chen Z B, Wang K and Guo X L 2018 J. Quantum Spectrosc. Radiat. Transfer 220 28 [24] El-Maaref A A 2016 J. Quantum Spectrosc. Radiat. Transfer 170 45 [25] Hao L H, Liu J J and Kang X P 2016 Eur. Phys. J. Plus 131 204 [26] Cai J, Yu W W and Zhang N 2014 Chin. Phys. Lett. 31 093101 [27] Gu M F 2005 At. Data Nucl. Data Tables 89 267 [28] Nahar S N and Pradhan A 1999 Astron. Astrophys. Suppl. Ser. 135 347 [29] Fischer C F, Saparov M, Gaigalas G and Godefroid M 1998 At. Data Nucl. Data Tables 70 119 [30] Kozhedub Y S, Volotka A V, Artemyev A N, Glazov D A, Plunien G, Shabaev V M, Tupitsyn I I and Stöhlker T 2010 Phys. Rev. A 81 042513 [31] Berrington K, Eissner W and Norrington P 1995 Comput. Phys. Commun. 92 290 [32] Scott N and Burke P J 1980 J. Phys. B: At. Mol. Opt. Phys. 13 4299 [33] Nahar S N 2002 Astron. Astrophys. 389 716 [34] Fischer C F 1999 Phys. Scr. T83 49 [35] Fischer C F 2005 Nucl. Inst. Methods Phys. Res. B 235 100 [36] Grant I P, McKenzie B J, Norrington P H, Mayers D F and Pyper N C 1980 Comput. Phys. Commun. 21 207 [37] Jönsson P, Gaigalas G, Bieroń J, Fischer C F and Grant I P 2013 Comput. Phys. Commun. 184 2197 [38] Nahar S N 2020 Atoms 8 68 [39] Gu M F 2008 Can. J. Phys. 86 675 [40] Fischer C F, Gaigalas G, Jönsson P and Bieroń J 2019 Comput. Phys. Commun. 237 184 [41] Wang K, Si R, Dang W, Jönsson P, Guo X L, Li S, Chen Z B, Zhang H, Long F Y, Liu H T, Li D F, Hutton R, Chen C Y and Yan J 2016 Astrophys. J. Suppl. Ser. 223 3 [42] Wang K, Jönsson P, Ekman J, Gaigalas G, Godefroid M R, Si R, Chen Z B, Li S, Chen C Y and Yan J 2017 Astrophys. J. Suppl. Ser. 229 37 [43] Si R, Li S, Guo X L, Chen Z B, Brage T, Jönsson P, Wang K, Yan J, Chen C Y and Zou Y M 2016 Astrophys. J. Suppl. Ser. 227 16 [44] Wang K, Chen Z B, Si R, Jönsson P, Ekman J, Guo X L, Li S, Long F Y, Dang W, Zhao X H, Hutton R, Chen C Y, Yan J and Yang X 2016 Astrophys. J. Suppl. Ser. 226 14 [45] Gu M F, Holczer T, Behar E and Kahn S 2006 Astrophys. J. 641 1227 [46] Gu M F 2007 Astrophys. J. Suppl. Ser. 169 154 [47] Lindgren I J 1974 J. Phys. B: At. Mol. Opt. Phys. 7 2441 [48] Brage T, Fischer C F and Jönsson P 1994 Phys. Rev. A 49 2181 [49] Jönsson P, Gaigalas G, Fischer C F, Bieroń J, Grant I P, Brage T, Ekman J, Godefroid M, Grumer J, Li J G and Li W X 2023 Atoms 11 68 [50] Papoulia A, Ekman J, Gaigalas G, Godefroid M, Gustafsson S, Hartman H, Li W X, Radžiūtė L, Rynkun P, Schiffmann S, Wang K and Jönsson P 2019 Atoms 7 106 [51] Fischer C F 2014 Atoms 2 1 [52] Johnson W R, Liu Z W and Sapirstein J 1996 At. Data Nucl. Data Tables 64 279 [53] Aggarwal K M 2021 Indian J. Phys. 95 797 [54] Brage T and Fischer C F 1993 Phys. Scr. T47 18 [55] Fischer C F 2010 J. Phys. B: At. Mol. Opt. Phys. 43 074020 [56] Aggarwal K M 2019 J. Quantum Spectrosc. Radiat. Transfer 231 136 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|