Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(10): 103101    DOI: 10.1088/1674-1056/acef01
RAPID COMMUNICATION Prev   Next  

Fully relativistic many-body perturbation energies, transition properties, and lifetimes of lithium-like iron Fe XXIV

Shuang Li(李双)1,2,3,4,†, Min Zhao(赵敏)1, Guo-Qing Liu(刘国庆)1, Chang-Bao Hu(胡昌宝)1, and Guo-Zhu Pan(潘国柱)1
1 School of Electrical and Opto-electronic Engineering, West Anhui University, Lu'an 237012, China;
2 College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
3 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
4 Shanghai EBIT Laboratory, Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433, China
Abstract  Employing the advanced relativistic configuration interaction (RCI) combined with the many-body perturbation theory (RMBPT) method, we report energies and lifetime values for the lowest 35 energy levels from the (1s$^2$)$nl$ configurations (where the principal quantum number $n = 2$-6 and the angular quantum number $l = 0,\ldots,n-1$) of lithium-like iron Fe XXIV, as well as complete data on the transition wavelengths, radiative rates, absorption oscillator strengths, and line strengths between the levels. Both the allowed (E1) and forbidden (magnetic dipole M1, magnetic quadrupole M2, and electric quadrupole E2) ones are reported. Through detailed comparisons with previous results, we assess the overall accuracies of present RMBPT results to be likely the most precise ones to date. Configuration interaction effects are found to be very important for the energies and radiative properties for the ion. The present RMBPT results are valuable for spectral line identification, plasma modeling, and diagnosing.
Keywords:  relativistic many-body perturbation      multi-reference configuration      radiative rates      lifetime  
Received:  20 April 2023      Revised:  27 July 2023      Accepted manuscript online:  11 August 2023
PACS:  31.15.vj (Electron correlation calculations for atoms and ions: excited states)  
  31.15.am (Relativistic configuration interaction (CI) and many-body perturbation calculations)  
  31.15.xp (Perturbation theory)  
  32.70.Cs (Oscillator strengths, lifetimes, transition moments)  
Fund: Project supported by the Research Foundation for Higher Level Talents of West Anhui University (Grant No. WGKQ2021005).
Corresponding Authors:  Shuang Li     E-mail:  lishuangwuli@126.com

Cite this article: 

Shuang Li(李双), Min Zhao(赵敏), Guo-Qing Liu(刘国庆), Chang-Bao Hu(胡昌宝), and Guo-Zhu Pan(潘国柱) Fully relativistic many-body perturbation energies, transition properties, and lifetimes of lithium-like iron Fe XXIV 2023 Chin. Phys. B 32 103101

[1] Ullmann J, Andelkovic Z and Brandau C, et al. 2017 Nat. Commun. 8 15484
[2] Karr J P 2017 Nat. Phys. 13 533
[3] Zhang G S, Deng B L, Yang J, Tang K, Meng B and Zhang X Q 2023 At. Data Nucl. Data Tables 149 101547
[4] Skripnikov L V, Schmidt S, Ullmann J, et al. 2018 Phys. Rev. Lett. 120 093001
[5] Volotka A V, Glazov D A, Shabaev V M, Tupitsyn I I and Plunien G 2014 Phys. Rev. Lett. 112 253004
[6] Deng B L, Jiang G and Zhang C Y 2014 At. Data Nucl. Data Tables 100 1337
[7] Aggarwal K M and Keenan F P 2013 At. Data Nucl. Data Tables 99 156
[8] Aggarwal K M and Keenan F P 2012 At. Data Nucl. Data Tables 98 1003
[9] Liang G Y and Badnell N R 2011 Astron. Astrophys. 528 A69
[10] Mitra-Kraev U and Del Zanna G 2019 Astron. Astrophys. 628 A134
[11] Neupert W M, Swartz M and Kastner S O 1973 Sol. Phys. 31 171
[12] Boiko V, Faenov A and Pikuz S 1978 J. Quantum Spectrosc. Radiat. Transfer 19 11
[13] Zhang W M, Zhang L, Cheng Y X, Morita S, Wang Z X, Hu A L, Zhang F L, Duan Y M, Zhou T F, Wang S X and Liu H Q 2022 Phys. Scr. 97 045604
[14] Epp S W, López-Urrutia J R C, Brenner G, Mäckel V, Mokler P H, Treusch R, Kuhlmann M, Yurkov M V, Feldhaus J, Schneider J R, Wellhöfer M, Martins M, Wurth W and Ullrich J 2007 Phys. Rev. Lett. 98 183001
[15] Chen H, Gu M F, Behar E, Brown G V, Kahn S M and Beiersdorfer P 2007 Astrophys. J. Suppl. Ser. 168 319
[16] Li W X, Amarsi A M, Papoulia A, Ekman J and Jansson P 2021 Mon. Not. R. Astron. Soc. 502 3780
[17] Zhang D H, Zhang F J, Ding X B and Dong C Z 2021 Chin. Phys. B 30 043102
[18] Zeng J L, Li Y J and Yuan J M 2021 J. Quantum Spectrosc. Radiat. Transfer 272 107777
[19] Liu X, Zhang J C and Wang Z W 2019 Results Phys. 12 398
[20] Santana J A, Peña-Cotto E L, Butler E J M, Beiersdorfer P and Brown V G 2019 Astrophys. J. Suppl. Ser. 245 9
[21] Santana J A, Lopez-Dauphin N A and Beiersdorfer P 2018 Astrophys. J. Suppl. Ser. 234 13
[22] Santana J A, Lopez-Dauphin N A, Butler E J M and Beiersdorfer P 2018 Astrophys. J. Suppl. Ser. 238 34
[23] Chen Z B, Wang K and Guo X L 2018 J. Quantum Spectrosc. Radiat. Transfer 220 28
[24] El-Maaref A A 2016 J. Quantum Spectrosc. Radiat. Transfer 170 45
[25] Hao L H, Liu J J and Kang X P 2016 Eur. Phys. J. Plus 131 204
[26] Cai J, Yu W W and Zhang N 2014 Chin. Phys. Lett. 31 093101
[27] Gu M F 2005 At. Data Nucl. Data Tables 89 267
[28] Nahar S N and Pradhan A 1999 Astron. Astrophys. Suppl. Ser. 135 347
[29] Fischer C F, Saparov M, Gaigalas G and Godefroid M 1998 At. Data Nucl. Data Tables 70 119
[30] Kozhedub Y S, Volotka A V, Artemyev A N, Glazov D A, Plunien G, Shabaev V M, Tupitsyn I I and Stöhlker T 2010 Phys. Rev. A 81 042513
[31] Berrington K, Eissner W and Norrington P 1995 Comput. Phys. Commun. 92 290
[32] Scott N and Burke P J 1980 J. Phys. B: At. Mol. Opt. Phys. 13 4299
[33] Nahar S N 2002 Astron. Astrophys. 389 716
[34] Fischer C F 1999 Phys. Scr. T83 49
[35] Fischer C F 2005 Nucl. Inst. Methods Phys. Res. B 235 100
[36] Grant I P, McKenzie B J, Norrington P H, Mayers D F and Pyper N C 1980 Comput. Phys. Commun. 21 207
[37] Jönsson P, Gaigalas G, Bieroń J, Fischer C F and Grant I P 2013 Comput. Phys. Commun. 184 2197
[38] Nahar S N 2020 Atoms 8 68
[39] Gu M F 2008 Can. J. Phys. 86 675
[40] Fischer C F, Gaigalas G, Jönsson P and Bieroń J 2019 Comput. Phys. Commun. 237 184
[41] Wang K, Si R, Dang W, Jönsson P, Guo X L, Li S, Chen Z B, Zhang H, Long F Y, Liu H T, Li D F, Hutton R, Chen C Y and Yan J 2016 Astrophys. J. Suppl. Ser. 223 3
[42] Wang K, Jönsson P, Ekman J, Gaigalas G, Godefroid M R, Si R, Chen Z B, Li S, Chen C Y and Yan J 2017 Astrophys. J. Suppl. Ser. 229 37
[43] Si R, Li S, Guo X L, Chen Z B, Brage T, Jönsson P, Wang K, Yan J, Chen C Y and Zou Y M 2016 Astrophys. J. Suppl. Ser. 227 16
[44] Wang K, Chen Z B, Si R, Jönsson P, Ekman J, Guo X L, Li S, Long F Y, Dang W, Zhao X H, Hutton R, Chen C Y, Yan J and Yang X 2016 Astrophys. J. Suppl. Ser. 226 14
[45] Gu M F, Holczer T, Behar E and Kahn S 2006 Astrophys. J. 641 1227
[46] Gu M F 2007 Astrophys. J. Suppl. Ser. 169 154
[47] Lindgren I J 1974 J. Phys. B: At. Mol. Opt. Phys. 7 2441
[48] Brage T, Fischer C F and Jönsson P 1994 Phys. Rev. A 49 2181
[49] Jönsson P, Gaigalas G, Fischer C F, Bieroń J, Grant I P, Brage T, Ekman J, Godefroid M, Grumer J, Li J G and Li W X 2023 Atoms 11 68
[50] Papoulia A, Ekman J, Gaigalas G, Godefroid M, Gustafsson S, Hartman H, Li W X, Radžiūtė L, Rynkun P, Schiffmann S, Wang K and Jönsson P 2019 Atoms 7 106
[51] Fischer C F 2014 Atoms 2 1
[52] Johnson W R, Liu Z W and Sapirstein J 1996 At. Data Nucl. Data Tables 64 279
[53] Aggarwal K M 2021 Indian J. Phys. 95 797
[54] Brage T and Fischer C F 1993 Phys. Scr. T47 18
[55] Fischer C F 2010 J. Phys. B: At. Mol. Opt. Phys. 43 074020
[56] Aggarwal K M 2019 J. Quantum Spectrosc. Radiat. Transfer 231 136
[1] Impacts of hydrogen annealing on the carrier lifetimes in p-type 4H-SiC after thermal oxidation
Ruijun Zhang(张锐军), Rongdun Hong(洪荣墩), Jingrui Han(韩景瑞), Hungkit Ting(丁雄杰), Xiguang Li(李锡光), Jiafa Cai(蔡加法), Xiaping Chen(陈厦平), Deyi Fu(傅德颐), Dingqu Lin(林鼎渠), Mingkun Zhang(张明昆), Shaoxiong Wu(吴少雄),Yuning Zhang(张宇宁), Zhengyun Wu(吴正云), and Feng Zhang(张峰). Chin. Phys. B, 2023, 32(6): 067205.
[2] Molecular fluorescence significantly enhanced by gold nanoparticles@zeolitic imidazolate framework-8
Yuyi Zhang(张钰伊), Yajie Bian(卞亚杰), Wei Zhang(张炜), Yiting Liu(刘易婷), Xiaolei Zhang(张晓磊),Mengdi Chen(陈梦迪), Bingwen Hu(胡炳文), and Qingyuan Jin(金庆原). Chin. Phys. B, 2023, 32(5): 054208.
[3] Benchmarking calculations of excitation energies and transition properties with spectroscopic accuracy of highly charged ions used for the fusion plasma and astrophysical plasma
Chunyu Zhang(张春雨), Kai Wang(王凯), Ran Si(司然), Jinqing Li(李金晴), Changxian Song(宋昌仙), Sijie Wu(吴思捷), Bishuang Yan(严碧霜), and Chongyang Chen(陈重阳). Chin. Phys. B, 2023, 32(11): 113102.
[4] Lifetime measurement of the 3d9 2D3/2 metastable level in Mo15+ at an electron beam ion trap
Jialin Liu(刘佳林), Yintao Wang(王银涛), Bingsheng Tu(屠秉晟), Liangyu Huang(黄良玉), Ran Si(司然), Jiguang Li(李冀光), Mingwu Zhang(张明武), Yunqing Fu(傅云清), Yaming Zou(邹亚明), and Ke Yao(姚科). Chin. Phys. B, 2023, 32(10): 103201.
[5] Spectroscopic study of B2Σ+–X1 2Π1/2 transition of electron electric dipole moment candidate PbF
Ben Chen(陈犇), Yi-Ni Chen(陈旖旎), Jia-Nuan Pan(潘佳煖), Jian-Ping Yin(印建平), and Hai-Ling Wang(汪海玲). Chin. Phys. B, 2022, 31(9): 093301.
[6] Quantum oscillations in a hexagonal boron nitride-supported single crystalline InSb nanosheet
Li Zhang(张力), Dong Pan(潘东), Yuanjie Chen(陈元杰), Jianhua Zhao(赵建华), and Hongqi Xu(徐洪起). Chin. Phys. B, 2022, 31(9): 098507.
[7] Relativistic calculations on the transition electric dipole moments and radiative lifetimes of the spin-forbidden transitions in the antimony hydride molecule
Yong Liu(刘勇), Lu-Lu Li(李露露), Li-Dan Xiao(肖利丹), and Bing Yan(闫冰). Chin. Phys. B, 2022, 31(8): 083101.
[8] Theoretical study on the transition properties of AlF
Yun-Guang Zhang(张云光), Ling-Ling Ji(吉玲玲), Ru Cai(蔡茹),Cong-Ying Zhang(张聪颖), and Jian-Gang Xu(徐建刚). Chin. Phys. B, 2022, 31(5): 053101.
[9] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[10] Vibronic spectra of aluminium monochloride relevant to circumstellar molecule
Jian-Gang Xu(徐建刚), Cong-Ying Zhang(张聪颖), Yun-Guang Zhang(张云光). Chin. Phys. B, 2020, 29(3): 033102.
[11] Reliability of organic light-emitting diodes in low-temperature environment
Saihu Pan(潘赛虎), Zhiqiang Zhu(朱志强), Kangping Liu(刘康平), Hang Yu(于航), Yingjie Liao(廖英杰), Bin Wei(魏斌), Redouane Borsali, and Kunping Guo(郭坤平). Chin. Phys. B, 2020, 29(12): 128503.
[12] Impact of proton-induced alteration of carrier lifetime on single-event transient in SiGe heterojunction bipolar transistor
Jia-Nan Wei(魏佳男), Chao-Hui He(贺朝会), Pei Li(李培), Yong-Hong Li(李永宏), Hong-Xia Guo(郭红霞). Chin. Phys. B, 2019, 28(7): 076106.
[13] Quantal studies of sodium 3p←3s photoabsorption spectra perturbed by ground lithium atoms
N Lamoudi, F Talbi, M T Bouazza, M Bouledroua, K Alioua. Chin. Phys. B, 2019, 28(6): 063202.
[14] Low-lying electronic states of aluminum monoiodide
Xiang Yuan(袁翔), Shuang Yin(阴爽), Yi Lian(连艺), Pei-Yuan Yan(颜培源), Hai-Feng Xu(徐海峰), Bing Yan(闫冰). Chin. Phys. B, 2019, 28(4): 043101.
[15] Crystalline silicon surface passivation investigated by thermal atomic-layer-deposited aluminum oxide
Cai-Xia Hou(侯彩霞), Xin-He Zheng(郑新和), Rui Jia(贾锐), Ke Tao(陶科), San-Jie Liu(刘三姐), Shuai Jiang(姜帅), Peng-Fei Zhang(张鹏飞), Heng-Chao Sun(孙恒超), Yong-Tao Li(李永涛). Chin. Phys. B, 2017, 26(9): 098103.
No Suggested Reading articles found!