Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 047302    DOI: 10.1088/1674-1056/25/4/047302

Excitonic transitions in Be-doped GaAs/AlAs multiple quantum well

Wei-Min Zheng(郑卫民)1, Su-Mei Li(李素梅)2, Wei-Yan Cong(丛伟艳)1, Ai-Fang Wang(王爱芳)1, Bin Li(李斌)3, Hai-Bei Huang(黄海北)4
1 School of Space Science and Physics, Shandong University, Weihai 264209, China;
2 School of Information Engineering, Shandong University, Weihai 264209, China;
3 Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;
4 School of Chemistry, the University of Melbourne, Victoria 3010, Australia
Abstract  A series of GaAs/AlAs multiple-quantum wells doped with Be is grown by molecular beam epitaxy. The photoluminescence spectra are measured at 4, 20, 40, 80, 120, and 200 K, respectively. The recombination transition emission of heavy-hole and light-hole free excitons is clearly observed and the transition energies are measured with different quantum well widths. In addition, a theoretical model of excitonic states in the quantum wells is used, in which the symmetry of the component of the exciton wave function representing the relative motion is allowed to vary between the two-and three-dimensional limits. Then, within the effective mass and envelope function approximation, the recombination transition energies of the heavy-and light-hole excitons in GaAs/AlAs multiple-quantum wells are calculated each as a function of quantum well width by the shooting method and variational principle with two variational parameters. The results show that the excitons are neither 2D nor 3D like, but are in between in character and that the theoretical calculation is in good agreement with the experimental results.
Keywords:  GaAs/GaAlAs mulitiple quantum wells      heavy-and light-hole excitons      photoluminescence spectra      variational calculation  
Received:  31 October 2015      Revised:  30 December 2015      Accepted manuscript online: 
PACS:  73.21.Fg (Quantum wells)  
  71.35.-y (Excitons and related phenomena)  
  71.55.Eq (III-V semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61178039) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FM028).
Corresponding Authors:  Wei-Min Zheng     E-mail:

Cite this article: 

Wei-Min Zheng(郑卫民), Su-Mei Li(李素梅), Wei-Yan Cong(丛伟艳), Ai-Fang Wang(王爱芳), Bin Li(李斌), Hai-Bei Huang(黄海北) Excitonic transitions in Be-doped GaAs/AlAs multiple quantum well 2016 Chin. Phys. B 25 047302

[1] Chen X R, Song Y X, Zhu L Q, Qi Z, Zhu L, Zha F X, Guo S L, Wang S M and Shao J 2015 Chin. Phys. Lett. 32 067301
[2] Ünsal Ö L, Gönül B and Temiz M 2014 Chin. Phys. B 23 077104
[3] Huang H B, Zheng W M, Cong W Y, Meng X Y and Zhai J B 2013 Phys. Status Solidi B 250 1352
[4] Halsall M P, Harrison P, Wells J P R, Bradley I V and Pellemans H 2001 Phys. Rev. B 63 155314
[5] Li S M, Zheng W M, Wu A L, Cong W Y, Liu J, Chu N N and Song Y X 2010 Appl. Phys. Lett. 97 023507
[6] Sivalertporn K, Mouchliadis L, Ivanov A L, Philp R and Muljarov E A 2012 Phys. Rev. B 85 045207
[7] Ivchenko E L, Kavokin A V, Kochereshko V P, Posina G R, Uraltsev I N, Yakovlev D R, Bicknell-Tassius R N, Waag A and Landwehr G 1992 Phys. Rev. B 46 7713
[8] Monozon B S and Schmelcher P 2010 Phys. Rev. B 82 205313
[9] Kuo Y H and Li Y S 2009 Phys. Rev. B 79 245328
[10] Bellabchara A, Lefebvre P, Christol P and Mathieu H 1994 Phys. Rev. B 50 11840
[11] He X F 1991 Phys. Rev. B 43 2063
[12] Kundrotas J, Čerškus A, Ašmontas S, Valušis G, Sherliker B, Halsall M P, Steer M J, Johannessen E and Harrison P 2005 Phys. Rev. B 72 235322
[13] He X F 1990 Solid State Commun. 75 111
[14] Ronnow T F, Pedersen T G, Partoens B and Berthelsen K K 2011 Phys. Rev. B 84 035316
[15] Zheng W M, Halsall M P, Harmer P, Harrison P and Steer M J 2002 J. Appl. Phys. 92 6039
[16] Feldmann J, Peter G, Göbel E O, Dawson P, Moore K, Foxon C and Elliott R J 1987 Phys. Rev. Lett. 59 2337
[17] Harrison P, Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures (England: Wiley)
[18] Zheng W M, Wang A F, Lu Y B, Zhang P and Hong D 2007 Semicond. Sci. Technol. 22 74
[19] Zheng W M, Halsall M P, Harmer P, Harrison P and Steer M J 2004 Appl. Phys. Lett. 84 735
[1] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[2] Non-Born-Oppenheimer study of the muonic molecule ion 4Heμ+
Hang Yang(杨航), Meng-Shan Wu(吴孟山), Yi Zhang(张屹), Ting-Yun Shi(史庭云), Kalman Varga, Jun-Yi Zhang(张俊义). Chin. Phys. B, 2020, 29(4): 043102.
[3] Influence of annealing conditions on impurity species in arsenic-doped HgCdTe grown by molecular beam epitaxy
Yue Fang-Yu(越方禹), Chen Lu(陈璐), Li Ya-Wei(李亚巍), Hu Zhi-Gao(胡志高), Sun Lin(孙琳), Yang Ping-Xiong(杨平雄), and Chu Jun-Hao(褚君浩). Chin. Phys. B, 2010, 19(11): 117106.
[4] A note on localized transition in the spin-boson model by variational calculation
Chen Zhi-De(陈芝得) and Hou Zhi-Lan(侯志兰). Chin. Phys. B, 2008, 17(7): 2701-2706.
[5] The influence of nickel dopant on the microstructure and optical properties of SnO2 nano-powders
Liu Chun-Ming(刘春明), Fang Li-Mei(方丽梅), Zu Xiao-Tao(祖小涛), and Zhou Wei-Lie(周伟列). Chin. Phys. B, 2007, 16(1): 95-99.
[6] Relativistic energy, fine structure and hyperfine structure of the low-lying excited states for Be-like system
Zhang Meng (张孟), Gou Bing-Cong (苟秉聪). Chin. Phys. B, 2005, 14(8): 1554-1558.
No Suggested Reading articles found!