|
|
Generalized Einstein-Podolsky-Rosen steering paradox |
Zhi-Jie Liu(刘志洁)1,†, Xing-Yan Fan(樊星言)1,†, Jie Zhou(周洁)2,†, Mi Xie(谢汨)3, and Jing-Ling Chen(陈景灵)1,‡ |
1 Theoretical Physics Division, Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China; 2 College of Physics and Materials Science, Tianjin Normal University, Tianjin 300382, China; 3 Department of Physics, School of Science, Tianjin University, Tianjin 300072, China |
|
|
Abstract Quantum paradoxes are essential means to reveal the incompatibility between quantum and classical theories, among which the Einstein-Podolsky-Rosen (EPR) steering paradox offers a sharper criterion for the contradiction between local-hidden-state model and quantum mechanics than the usual inequality-based method. In this work, we present a generalized EPR steering paradox, which predicts a contradictory equality "$2_{\rm Q}=\left( 1+\delta\right) _{\rm C}$" ($0\leq\delta<1$) given by the quantum (Q) and classical (C) theories. For any $N$-qubit state in which the conditional state of the steered party is pure, we test the paradox through a two-setting steering protocol, and find that the state is steerable if some specific measurement requirements are satisfied. Moreover, our construction also enlightens the building of EPR steering inequality, which may contribute to some schemes for typical quantum teleportation and quantum key distributions.
|
Received: 05 August 2024
Revised: 25 August 2024
Accepted manuscript online: 27 August 2024
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275136 and 12075001), the 111 Project (Grant No. B23045), and the Nankai Zhide Foundation. |
Corresponding Authors:
Jing-Ling Chen
E-mail: chenjl@nankai.edu.cn
|
Cite this article:
Zhi-Jie Liu(刘志洁), Xing-Yan Fan(樊星言), Jie Zhou(周洁), Mi Xie(谢汨), and Jing-Ling Chen(陈景灵) Generalized Einstein-Podolsky-Rosen steering paradox 2024 Chin. Phys. B 33 110307
|
[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777 [2] Schrödinger E 1935 Proc. Cambridge Philo. Soc. 31 555 [3] Schrödinger E 1936 Proc. Cambridge Philo. Soc. 32 446 [4] Vujicic M and Herbut F 1988 J. Phys. A: Math. Gen. 21 2931 [5] Reid M D 1989 Phys. Rev. A 40 913 [6] Verstraete F 2002 Quantum entanglement and quantum information, Ph.D. Dissertation (Leuven: Katholieke Universiteit Leuven) [7] Popescu S and Rohrlich D 1994 Found. Phys. 24 397 [8] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865 [9] Doherty A C, Parrilo P A and Spedalieri F M 2002 Phys. Rev. Lett. 88 187904 [10] Li N and Luo S 2008 Phys. Rev. A 78 024303 [11] Brunner N, Cavalcanti D, Pironio S, Scarani V and Wehner S 2014 Rev. Mod. Phys. 86 419 [12] Fry E S and Thompson R C 1976 Phys. Rev. Lett. 37 465 [13] Augusiak R, Demianowicz M and Acín A 2014 J. Phys. A: Math. Theor. 47 42 [14] Barukćič I 2006 Causation 1 11 [15] Wiseman H M, Jones S J and Doherty A C 2007 Phys. Rev. Lett. 98 140402 [16] Jones S J, Wiseman H M and Doherty A C 2007 Phys. Rev. A 76 052116 [17] Saunders D J, Jones S J, Wiseman H M and Pryde G J 2010 Nat. Phys. 6 845 [18] Meng H X, Zhou J, Jiang S H, Xu Z P, Ren C L, Su H Y and Chen J L 2018 Opt. Commun. 425 101 [19] Meng H X, Zhou J, Ren C L, Su H Y and Chen J L 2018 Inter. J. Quantum. Inform. 16 1850034 [20] Chen J L, Ye X J, Wu C F, Su H Y, Cabello A, Kwek L C and Oh C H 2013 Sci. Rep. 3 2143 [21] Chen J L, Su H Y, Xu Z P and Pati A K 2016 Sci. Rep. 6 32075 [22] Feng T F, Ren C L, Feng Q, Luo M L, Qiang X G, Chen J L and Zhou X Q 2021 Photon. Res. 9 6 [23] Liu Z H, Zhou J, Meng H X, Yang M, Li Q, Meng Y, Su H Y, Chen J L, Sun K, Xu J S, Li C F and Guo G C 2021 npj Quantum Inf. 7 66 [24] Liu Z J, Zhou J, Meng H X, Fan X Y, Xie M, Zhang F L and Chen J L 2024 Mod. Phys. Lett. A 39 2450030 [25] Cavalcanti D, Almeida M L, Scarani V and Acín A 2011 Nat. Commun. 2 184 [26] Acín A, Gisin N and Toner B 2006 Phys. Rev. A 73 062105 [27] Gehring T, Händchen V, Duhme J, Furrer F, Franz T, Pacher C, Werner R F and Schnabel R 2015 Nat. Commun. 6 8795 [28] Armstrong S, Wang M, Teh R Y, Gong Q H, He Q Y, Janousek J, Bachor H A, Reid M D and Lam P K 2015 Nat. Phys. 11 167 [29] He Q Y, Rosales-Zárate L, Adesso G and Reid M D 2015 Phys. Rev. Lett. 115 180502 [30] Skrzypczyk P and Cavalcanti D 2018 Phys. Rev. Lett. 120 260401 [31] Piani M and Watrous J 2015 Phys. Rev. Lett. 114 060404 [32] Yadin B, Fadel M and Gessner M 2021 Nat. Commun. 12 2410 [33] Li J, Zhou Y and Wang Q 2022 Chin. Phys. Lett. 39 110301 [34] Hu M J, Hu X M and Zhang Y S 2024 Chin. Phys. Lett. 41 050302 [35] Du M M, Zhang D J, Zhou Z Y and Tong D M 2021 Phys. Rev. A 104 012418 [36] Du M M and Tong D M 2021 Phys. Rev. A 103 032407 [37] Chen Y Y, Guo F Z, Wei S H and Wen Q Y 2023 Chin. Phys. B 32 040309 [38] Braunstein S L and Caves C M 1990 Ann. Phys. 202 22 [39] Werner R F 1989 Phys. Rev. A 40 4277 [40] Mermin N D 1990 Phys. Rev. Lett. 65 1838 [41] Scarani V, Acín A, Schenck E and Aspelmeyer M 2005 Phys. Rev. A 71 042325 [42] Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|