|
|
Geometries, stabilities, and electronic properties analysis in InnNi(0, ±1) clusters: Molecular modeling and DFT calculations |
Shun-Ping Shi(史顺平)1, Chuan-Yu Zhang(张传瑜)1, Xiao-Feng Zhao(赵晓凤)1, Xia Li(李侠)1, Min Yan(闫珉)1, Gang Jiang(蒋刚)2 |
1 Department of Applied Physics, College of Geophysics, Chengdu University of Technology, Chengdu 610059, China;
2 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China |
|
|
Abstract Density functional theory (DFT) with the B3LYP method and the SDD basis set is selected to investigate InnNi, InnNi-, and InnNi+ (n=1-14) clusters. For neutral and charged systems, several isomers and different multiplicities are studied with the aim to confirm the most stable structures. The structural evolution of neutral, cationic, and anionic InnNi clusters, which favors the three-dimensional structures for n=3-14. The main configurations of the InnNi isomers are not affected by adding or removing an electron, the order of their stabilities is also nearly not affected. The obtained binding energy exhibits that the Ni-doped In13 cluster is the most stable species of all different sized clusters. The calculated fragmentation energy and the second-order energy difference as a function of the cluster size exhibit a pronounced even-odd alternation phenomenon. The electronic properties including energy gap (Eg), adiabatic electron affinity (AEA), vertical electron detachment energy (VDE), adiabatic ionization potential energy (AIP), and vertical ionization potential energy (VIP) are studied. The total magnetic moments show that the different magnetic moments depend on the number of the In atoms for charged InnNi. Additionally, the natural population analysis of InnNi(0, ±1) clusters is also discussed.
|
Received: 23 March 2017
Revised: 04 May 2017
Accepted manuscript online:
|
PACS:
|
31.15.E-
|
|
|
36.40.Mr
|
(Spectroscopy and geometrical structure of clusters)
|
|
36.40.Cg
|
(Electronic and magnetic properties of clusters)
|
|
Fund: Project supported by the Cultivating Program of Excellent Innovation Team of Chengdu University of Technology (Grant No. KYTD201704), the Cultivating Program of Middle-aged Backbone Teachers of Chengdu University of Technology (Grant No. 10912-KYGG201512), the National Natural Science Foundation of China (Grant No. 11404042), the Science Fund from the Science & Technology Department of Sichuan Province, China (Grant No. 2016RZ0069), and the Research Foundation of Chengdu University of Technology, China (Grant No. 2017YG04). |
Corresponding Authors:
Chuan-Yu Zhang
E-mail: zhangchuanyu10@cdut.cn
|
About author: 0.1088/1674-1056/26/8/ |
Cite this article:
Shun-Ping Shi(史顺平), Chuan-Yu Zhang(张传瑜), Xiao-Feng Zhao(赵晓凤), Xia Li(李侠), Min Yan(闫珉), Gang Jiang(蒋刚) Geometries, stabilities, and electronic properties analysis in InnNi(0, ±1) clusters: Molecular modeling and DFT calculations 2017 Chin. Phys. B 26 083103
|
[1] |
Santos C L dos, Schhmidt T M and Piquini P 2011 Nanotechnology 22 265203
|
[2] |
Rayane D, Melinon P, Cabaud B, Hoareau A, Tribollet B and Broyer M 1989 J. Chem. Phys. 90 3295
|
[3] |
Ma Z, Coon S R, Calaway W F, Gruen M J and Von Nagy Felsobuki E L 1994 J. Vac. Sci. Technol. A 12 2425
|
[4] |
Baguenard B, Pellain M, Bordas C, Lermé J, Vialle J L and Broyer M 1993 Chem. Phys. Lett. 205 13
|
[5] |
Staudt C, Wucher A, Neukermans S, Janssens E, Vanhoutte F, Vandeweert E, Silverans R E and Lievens P 2002 Nucl. Instrum. Method Phys. Res. B 193 787
|
[6] |
Lermé J, Dugourd P, Hudgins R R and Jarrold M F 1999 Chem. Phys. Lett. 304 19
|
[7] |
Zhang W Q, Zhao G F, Sun J M, Zhi L L and Gu Y Z 2009 Chem. Phys. 361 44
|
[8] |
Froben F W, Schulze W and Kloss U 1983 Chem. Phys. Lett. 99 500
|
[9] |
Onwuagba B N 1993 Phys. Stat. Sol. 180 391
|
[10] |
King R B, Silaghi-Dumitrescu I and Kun A 2001 Inorg. Chem. 40 2450
|
[11] |
Staudt C and Wucher A 2002 Phys. Rev. B 66 075419
|
[12] |
Janssens E, Neukernans S, Vanhoutte F, Silverans R E, Lievens P, Navarro-Vázquez A and Schleyer P V R 2003 J. Chem. Phys. 118 5862
|
[13] |
Zhang W Q, Sun J M, Zhao G F and Zhi L L 2008 J. Chem. Phys. 129 064310
|
[14] |
Longo R C, Carrete J, Aguilera-Granja F, Vega A and Gallego L J 2009 J. Chem. Phys. 131 074504
|
[15] |
Ding J N Yuan N Y, Li C L, Wang X Q, Chen G G, Chen X S and Lu W 2011 J. Appl. Phys. 109 014322
|
[16] |
Zhang W Q, Liu T G and Bai Y Z 2012 Comput. Theor. Chem. 986 57
|
[17] |
Liu Y Z, Deng K M, Yuan Y B, Chen X, Wu H P and Wang X 2009 Chem. Phys. Lett. 469 321
|
[18] |
Chroneos A, Kube R, Bracht H, Grimes R W and Schwingenschlögl U 2010 Chem. Phys. Lett. 490 38
|
[19] |
Melko J J, Ong S V, Gupta U, Reveles J U, D'Emidio J, Khanna S N and Castleman A W Jr 2010 Chem. Phys. Lett. 500 196
|
[20] |
Liu Y Z, Yuan Y B, Xiao C Y and Deng K M 2013 Chem. Phys. Lett. 583 131
|
[21] |
Demaria G, Drowart J and Inghram M G 1959 J. Chem. Phys. 31 1076
|
[22] |
Li Z J and Li J H 2008 Chin. Phys. B 17 2951
|
[23] |
Nakajima A, Hoshino K, Sugioka T, Naganuma T, Taguwa T, Yamada Y, Watanabe K and Kaya K 1993 J. Phys. Chem. 97 86
|
[24] |
Costales A, Kandalam A and Pandey R 2003 J. Phys. Chem. B 107 4508
|
[25] |
Roy S and Springborg M 2003 J. Phys. Chem. B 107 2771
|
[26] |
Bernstein J, Armon E, Zemel E and Kolodney E 2013 J. Phys. Chem. A 117 11856
|
[27] |
Gupta U, Reveles J U, Melko J J, Khanna S N and Castleman A W Jr 2010 J. Phys. Chem. C 114 15963
|
[28] |
Melko J J, Ong S V, Gupta U, Reveles J U, D'Emidio J, Khanna S N and Castleman A W Jr 2010 J. Phys. Chem. C 114 20907
|
[29] |
Costales A, Kandalam A K, Pendás A M, Blanco M A, Recio J M and Pandey R 2000 J. Phys. Chem. B 104 4368
|
[30] |
Heinebrodt M, Malinowski N, Tast F, Branz W, Billas I M L and Martin T P 1999 J. Chem. Phys. 110 9915
|
[31] |
Costatles A and Pandey R 2002 Chem. Phys. Lett. 362 210
|
[32] |
Shi S P, Liu Y L, Deng B L, Zhang C Y and Jiang G 2014 Comput. Mater. Sci. 95 476
|
[33] |
Shi S P, Cao Y P, Zhai A P, Li Y and Jin X X 2011 Physica B 406 3544
|
[34] |
Wang J and Han J G 2006 J. Phys. Chem. B 110 7820
|
[35] |
Bandyopadhyay D and Sen P 2010 J. Phys. Chem. A 114 1835
|
[36] |
Yuan D W, Wang Y and Zeng Z 2005 J. Chem. Phys. 122 114310
|
[37] |
Ren Z Y, Li F, Guo P and Han J G 2005 Mol. J. Struc.: Theor. 718 165
|
[38] |
Bailey M S, Wilson N T, Roberts C and Johnston R L 2003 Eur. Phys. J. D 25 41
|
[39] |
Neukermans S, Janssens E, Tanaka H, Silverans R E and Lievens P 2003 Phys. Rev. Lett. 90 033401
|
[40] |
Guo L J, Zhao G F, Gu Y Z, Liu X and Zeng Z 2008 Phys. Rev. B 77 195417
|
[41] |
Becke A D 1988 Phys. Rev. A 38 3098
|
[42] |
Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785
|
[43] |
Bergner A, Dolg M, KÜchle W, Stoll H and Preuß H 1993 Mol. Phys. 80 1431
|
[44] |
Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A Jr, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Ortiz J V, Cui Q, Baboul A G, Clifford S, Cioslowski J, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin R L, Fox D J, Keith T, Al-Laham M A, Peng C Y, Nanayakkara A, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Gonzalez C and Pople J A 2003 Gaussian 03, Revision B 02, Gaussian, Inc, Pittsburgh PA
|
[45] |
Downs A J 1933 Chemistry of Aluminium, Gallium, Indium, and Thallium (London: Blackie Academic & Professional)
|
[46] |
Drowart J and Honig R E 1957 J. Phys. Chem. 61 980
|
[47] |
Gutsev G L and Bauschlicher Jr C W 2003 J. Phys. Chem. A 107 4755
|
[48] |
Morse M D, Hansen G P, Langridge-Smith P R R, Zheng L S, Geusic M E, Michalopoulos D L and Smalley R E 1984 J. Chem. Phys. 80 5400
|
[49] |
Wang H M, Haouari H, Craig R, Lombardi J R and Lindsay D M 1996 J. Chem. Phys. 104 3420
|
[50] |
Xing X D, Hermann A, Kuang X Y, Ju M, Lu C, Jin Y Y, Xia X X and Maroulis G 2016 Sci. Rep. 6 19656
|
[51] |
Shi S P, Liu Y L, Li Y. Deng B L, Zhang C Y and Jang G 2016 Comput. Theor. Chem. 1079 47
|
[52] |
Xing X D, Wang J J, Kuang X Y, Xia X X, Lu C and Maroulis G 2016 Phys. Chem. Chem. Phys. 18 26177
|
[53] |
Sun W G, Wang J J, Lu C, Xia X X, Kuang X Y and Hermann A 2017 Inorg. Chem. 56 1241
|
[54] |
Xia X X, Kuang X Y, Lu C, Jin Y Y, Xing X D, Merino G and Hermann A 2016 J. Phys. Chem. A 120 7947
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|