Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 096301    DOI: 10.1088/1674-1056/ad5538
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC

Lei Fu(伏磊)†, Shasha Li(李沙沙)†,‡, Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰)§, and Yong Pu(普勇)¶
School of Science & New Energy Technology Engineering Laboratory of Jiangsu Provence, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210023, China
Abstract  The two-dimensional (2D) Janus monolayers are promising in spintronic device application due to their enhanced magnetic couplings and Curie temperatures. Van der Waals CrCl$_{3}$ monolayer has been experimentally proved to have an in-plane magnetic easy axis and a low Curie temperature of 17 K, which will limit its application in spintronic devices. In this work, we propose a new Janus monolayer Cr$_{2}$Cl$_{3}$S$_{3}$ based on the first principles calculations. The phonon dispersion and elastic constants confirm that Janus monolayer Cr$_{2}$Cl$_{3}$S$_{3}$ is dynamically and mechanically stable. Our Monte Carlo simulation results based on magnetic exchange constants reveal that Janus monolayer Cr$_{2}$Cl$_{3}$S$_{3}$ is an intrinsic ferromagnetic semiconductor with $T_{\rm C}$ of 180 K, which is much higher than that of CrCl$_{3}$ due to the enhanced ferromagnetic coupling caused by S substitution. Moreover, the magnetic easy axis of Janus Cr$_{2}$Cl$_{3}$S$_{3}$ can be tuned to the perpendicular direction with a large magnetic anisotropy energy (MAE) of 142 μeV/Cr. Furthermore, the effect of biaxial strain on the magnetic property of Janus monolayer Cr$_{2}$Cl$_{3}$S$_{3}$ is evaluated. It is found that the Curie temperature is more robust under tensile strain. This work indicates that the Janus monolayer Cr$_{2}$Cl$_{3}$S$_{3}$ presents increased Curie temperature and out-of-plane magnetic easy axis, suggesting greater application potential in 2D spintronic devices.
Keywords:  first-principles calculations      2D materials      magnetic properties      ferromagentic semiconductor  
Received:  08 April 2024      Revised:  05 June 2024      Accepted manuscript online:  07 June 2024
PACS:  63.20.dk (First-principles theory)  
  75.70.Ak (Magnetic properties of monolayers and thin films)  
  75.50.Pp (Magnetic semiconductors)  
  61.82.Fk (Semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12104234), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20210578, 20KJB140004, and JSSCBS20210513). Y Pu acknowledges the National Natural Science Foundation of China (Grant Nos. 61874060, U1932159, and 61911530220), Jiangsu Specially-Appointed Professor Program, the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20181388 and 19KJA180007), and the Overseas Researcher Innovation Program of Nanjing, NUPTSF (Grant No. NY217118). F Li Acknowledges the Natural Science Fund for Colleges and Universities in Jiangsu Province, China (Grant No. 21KJD140005) and the National Natural Science Foundation of China (Grant No. 12304085).
Corresponding Authors:  Shasha Li, Feng Li, Yong Pu     E-mail:  shashali@njupt.edu.cn;lifeng@njupt.edu.cn;puyong@njupt.edu.cn

Cite this article: 

Lei Fu(伏磊), Shasha Li(李沙沙), Xiangyan Bo(薄祥䶮), Sai Ma(马赛), Feng Li(李峰), and Yong Pu(普勇) Two-dimensional Cr2Cl3S3 Janus magnetic semiconductor with large magnetic exchange interaction and high-TC 2024 Chin. Phys. B 33 096301

[1] Lin X Y, Yang W, Wang K L and Zhao W S 2019 Nat. Electron. 2 274
[2] Chen J and Dong S 2021 Phys. Rev. Lett. 126 117603
[3] Liu Y and Wang Q 2020 Adv. Sci. 7 1902468
[4] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z and Wang Y 2017 Nature 546 265
[5] McGuire M A, Clark G, Ks S, Chance W M, Jellison G E, Cooper V R, Xu X D and Sales B C 2017 Phys. Rev. Mater. 1 014001
[6] Huang B W, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A and Cobden D H 2017 Nature 546 270
[7] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W and Zhu J Y 2018 Nature 563 94
[8] Zhang W B, Qu Q, Zhu P and Lam C H 2015 J. Mate. Chem. C 3 12457
[9] Chen S B, Huang C X, Sun H S, Ding J F, Jena P and Kan E J 2019 J. Phys. Chem. C 123 17987
[10] Li H X, Xu Y K, Lai K and Zhang W B 2019 Phys. Chem. Chem. Phys. 21 11949
[11] Huang C X, Guan J T, Li Q Y, Wu F, Jena P and Kan E J 2021 Phys. Rev. B 103 L140410
[12] Avsar A, Ciarrocchi A, Pizzochero M, Unuchek D, Yazyev O V and Kis A 2019 Nat. Nanotechnol. 14 674
[13] Jiao J Y, Miao N H, Li Z, Gan Y, Zhou J and Sun Z M 2019 J. Phys. Chem. Lett. 10 3922
[14] Ng S W, Noor N and Zheng Z 2018 NPG Asia Mater. 10 217
[15] Zhang C M, Nie Y H, Sanvito S and Du A J 2019 Nano Lett. 19 1366
[16] Hu Y, Gong Y, Zeng H, Wang J and Fan X L 2020 Phys. Chem. Chem. Phys. 22 24506
[17] Li C Q and An Y K 2023 Nanoscale 15 8304
[18] Hai X C, Jun Z, Wei J, Yan N Z and Yuan P F 2021 Phys. Rev. B 12 125121
[19] Wu D X, Zhuo Z W, Lv H F and Wu X J 2021 J Phys. Chem. Lett. 12 2905
[20] Xue F, Hou Y S, Wang Z and Wu R Q 2019 Phys. Rev. B 100 224429
[21] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
[22] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[23] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[24] Blöchl P E 1994 Phys. Rev. B 50 17953
[25] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26] Rohrbach A, Hafner J and Kresse G 2003 J. Phys.: Condens. Matter. 15 979
[27] Huang C X, Du Y P, Wu H P, Xiang H J, Deng K M and Kan E J 2018 Phys. Rev. Lett. 120 147601
[28] Webster L and Yan J A 2018 Phys. Rev. B 98 144411
[29] Grimme S F, Antony J, Ehrlich S and Krieg H 2010 J. Chem. Phys. 132 15
[30] Togo A and Tanaka I 2015 Scripta Materialia 108 1
[31] Blaha P, Schwarz K, Madsen G, Kvasnicka D and Luitz J 2001 WIEN2k, An Augmented Plane Wave+ Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, TU Wien, Austria).
[32] Liechtenstein A I, Katsnelson M I, Antropov V P and Gubanov V A 1987 J. Magn. Magn. Mater. 9 767
[33] Wan X G, Yin Q and Savrasov S Y 2006 Phys. Rev. Lett. 97 266403
[34] Wang D, Bo X Y, Tang F and Wan X G 2023 Phys. Rev. B 108 085140
[35] Bo X Y, Fu L, Wan X G, Li S S and Pu Y 2024 Phys. Rev. B 109 014405
[36] Bo X Y, Wang D, Wan B and Wan X G 2020 Phys. Rev. B 101 024416
[37] Bo X, Wang D and Wan X G 2021 Phys. Lett. A 394 127202
[38] Wang D, Bo X Y, Tang F and Wan X G 2019 Phys. Rev. B 99 035160
[39] Zhang Y H, Wang B, Guo Y L, Li Q and Wang J L 2021 Comp. Mater. Sci. 197 110638
[40] Zhang F, Mi W B and Wang X C 2019 Adv. Electron. Mater. 6 1900778
[41] Wang Y, Qiao M, Li Y F and Chen Z F 2018 Nanos. Horizon. 3 327
[42] Chen W, Zhang J M, Nie Y Z, Xia Q L and Guo G H 2020 J. Magn. Magn. Mater. 508 166878
[43] Zhang Y H, Wang B, Guo Y L, Li Q and Wang J L 2021 Comp. Mater. Sci. 197 110638
[1] Strain-tuned electronic and valley-related properties in Janus monolayers of SWSiX2 (X = N, P, As)
Yunxi Qi(戚云西), Jun Zhao(赵俊), and Hui Zeng(曾晖). Chin. Phys. B, 2024, 33(9): 096302.
[2] Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
Qian Wang(王乾), Da-Wei Wu(邬大为), Guang-Hua Guo(郭光华), Meng-Qiu Long(龙孟秋), and Yun-Peng Wang(王云鹏). Chin. Phys. B, 2024, 33(9): 097507.
[3] Effect of Y element on atomic structure, glass forming ability, and magnetic properties of FeBC alloy
Jin-Hua Xiao(肖晋桦), Da-Wei Ding(丁大伟), Lin Li(李琳), Yi-Tao Sun(孙奕韬), Mao-Zhi Li(李茂枝), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2024, 33(7): 076101.
[4] Electronic transport evolution across the successive structural transitions in Ni50-xFexTi50 shape memory alloys
Ping He(何萍), Jinying Yang(杨金颖), Qiusa Ren(任秋飒), Binbin Wang(王彬彬), Guangheng Wu(吴光恒), and Enke Liu(刘恩克). Chin. Phys. B, 2024, 33(7): 077201.
[5] Influences of divalent ion substitution on the magnetic and dielectric properties of W-type barium ferrite
Shiyue He(何诗悦), Ruoshui Liu(刘若水), Xujie Liu(刘煦婕), Xianping Ye(叶先平), Lichen Wang(王利晨), and Baogen Shen(沈保根). Chin. Phys. B, 2024, 33(6): 066801.
[6] Relationship between disorder, magnetism and band topology in Mn(Sb1-xBix)2Te4 single crystals
Ming Xi(席明) and Hechang Lei(雷和畅). Chin. Phys. B, 2024, 33(6): 067503.
[7] Regulating the dopant clustering in LiZnAs-based diluted magnetic semiconductor
Zihang Jia(贾子航), Bo Zhou(周波), Zhenyi Jiang(姜振益), and Xiaodong Zhang(张小东). Chin. Phys. B, 2024, 33(5): 058101.
[8] Spin direction dependent quantum anomalous Hall effect in two-dimensional ferromagnetic materials
Yu-Xian Yang(杨宇贤) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(4): 047101.
[9] Mechanical and magnetocaloric adjustable properties of Fe3O4/PET deformed nanoparticle film
Fengguo Fan(范凤国) and Lintong Duan(段林彤). Chin. Phys. B, 2024, 33(3): 037502.
[10] Effect of In doping on the evolution of microstructure, magnetic properties and corrosion resistance of NdFeB magnets
Yuhao Li(李豫豪), Xiaodong Fan(范晓东), Zhi Jia(贾智), Lu Fan(范璐), Guangfei Ding(丁广飞), Xincai Liu(刘新才), Shuai Guo(郭帅), Bo Zheng(郑波), Shuai Cao(曹帅), Renjie Chen(陈仁杰), and Aru Yan(闫阿儒). Chin. Phys. B, 2024, 33(3): 037508.
[11] Enhanced soft magnetic properties of SiO2-coated FeSiCr magnetic powder cores by particle size effect
Mingyue Ge(葛铭悦), Likang Xiao(肖礼康), Xiaoru Liu(刘潇如), Lin Pan(潘嶙), Zhangyang Zhou(周章洋), Jianghe La(蓝江河), Zhengwei Xiong(熊政伟), Jichuan Wu(吴冀川), and Zhipeng Gao(高志鹏). Chin. Phys. B, 2024, 33(10): 107503.
[12] Impact of Co2+ substitution on structure and magnetic properties of M-type strontium ferrite with different Fe/Sr ratios
Yang Sun(孙洋), Ruoshui Liu(刘若水), Huayang Gong(宫华扬), and Baogen Shen(沈保根). Chin. Phys. B, 2024, 33(10): 107506.
[13] Optical spectrum of ferrovalley materials: A case study of Janus H-VSSe
Chao-Bo Luo(罗朝波), Wen-Chao Liu(刘文超), and Xiang-Yang Peng(彭向阳). Chin. Phys. B, 2024, 33(1): 016303.
[14] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[15] Quantum tunneling in the surface diffusion of single hydrogen atoms on Cu(001)
Xiaofan Yu(于小凡), Yangwu Tong(童洋武), and Yong Yang(杨勇). Chin. Phys. B, 2023, 32(8): 086801.
No Suggested Reading articles found!