Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 096103    DOI: 10.1088/1674-1056/ad57ac
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Dendritic tip selection during solidification of alloys: Insights from phase-field simulations

Qingjie Zhang(张清杰)1, Hui Xing(邢辉)1,2,†, Lingjie Wang(王灵杰)1, and Wei Zhai(翟薇)1
1 School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China;
2 Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
Abstract  The effect of undercooling $\Delta T$ and the interface energy anisotropy parameter $\varepsilon_{4} $ on the shape of the equiaxed dendritic tip has been investigated by using a quantitative phase-field model for solidification of binary alloys. It was found that the tip radius $\rho $ increases and the tip shape amplitude coefficient $A_{4} $ decreases with the increase of the fitting range for all cases. The dendrite tip shape selection parameter $\sigma^{\ast }$ decreases and then stabilizes with the increase of the fitting range, and $\sigma^{\ast }$ increases with the increase of $\varepsilon_{4} $. The relationship between $\sigma^{\ast }$ and $\varepsilon_{4}$ follows a power-law function $\sigma^{\ast }\propto \varepsilon_{4}^{\alpha } $, and $\alpha $ is independent of $\Delta T$ but dependent on the fitting range. Numerical results demonstrate that the predicted $\sigma^{\ast }$ is consistent with the curve of microscopic solvability theory (MST) for $\varepsilon_{4} <0.02$, and $\sigma ^{\ast }$ obtained from our phase-field simulations is sensitive to the undercooling when $\varepsilon_{4} $ is fixed.
Keywords:  phase-field simulations      dendritic structure      interface energy anisotropy      tip shape selection parameter  
Received:  15 March 2024      Revised:  20 May 2024      Accepted manuscript online:  13 June 2024
PACS:  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  02.70.-c (Computational techniques; simulations)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB3502600) and Shenzhen Science and Technology Program (Grant No. JCYJ20220530161813029).
Corresponding Authors:  Hui Xing     E-mail:  huixing@nwpu.edu.cn

Cite this article: 

Qingjie Zhang(张清杰), Hui Xing(邢辉), Lingjie Wang(王灵杰), and Wei Zhai(翟薇) Dendritic tip selection during solidification of alloys: Insights from phase-field simulations 2024 Chin. Phys. B 33 096103

[1] Zhao Y, Zhang B, Hou H, Chen W and Wang M 2019 J. Mater. Sci. Technol. 35 1044
[2] Neumann-Heyme H, Shevchenko N, Grenzer J, Eckert K, Beckermann C and Eckert S 2022 Phys. Rev. Mater. 6 063401
[3] Dantzig J A and Rappaz M 2016 Solidification 2nd Edn. (Lausanne: EPFL Press) p. 319
[4] Kurz W, Fisher D J and Trivedi R 2019 Int. Mater. Rev. 64 311
[5] Chopra M, Glicksman M and Singh N 1988 Metall. Trans. A 19 3087
[6] Li Q and Beckermann C 2002 J. Cryst. Growth 236 482
[7] Melendez A J and Beckermann C 2012 J. Cryst. Growth 340 175
[8] Liu S, Li J, Lee J and Trivedi R 2006 Philos. Mag. 86 3717
[9] Kurz W, Rappaz M and Trivedi R 2021 Int. Mater. Rev. 66 30
[10] Dougherty A and Lahiri M 2005 J. Cryst. Growth 274 233
[11] Zhao Y, Xing H, Zhang L, Huang H, Sun D, Dong X, Shen Y and Wang J 2023 Acta Metall. Sin. (Engl. Lett.) 36 1749
[12] Zhu J H, Zhen L, Zhong B Y, Wang Y J and Xu B X 2023 Chin. Phys. B 32 47701
[13] Zhu C S, Guo Z H, Lei P, Feng L and Zhao B R 2022 Chin. Phys. B 31 68102
[14] Shen X and Wang Q 2022 Chin. Phys. B 31 48201
[15] Li Y N, Hai M M, Zhao Y, Lv Y L, He Y, Chen G, Liu L Y, Liu R C and Zhang G G 2018 Chin. Phys. B 27 128703
[16] Chen W P, Hou H, Zhang Y T, Liu W and Zhao Y H 2023 Chin. Phys. B 32 118103
[17] Chen L Q and Zhao Y 2022 Prog. Mater. Sci. 124 100868
[18] Zhao Y 2023 npj Comput. Mater. 9 94
[19] Karma A and Rappel W J 1998 Phys. Rev. E 57 4323
[20] Karma A and Lee Y H 2000 Phys. Rev. E 61 3996
[21] LaCombe J, Koss M, Fradkov V and Glicksman M 1995 Phys. Rev. E 52 2778
[22] Rosam J, Jimack P K and Mullis A M 2009 Phys. Rev. E 79 030601
[23] Mullis A M, Rosam J and Jimack P K 2009 Trans. Indian Inst. Met. 62 309
[24] Ramirez J C, Beckermann C, Karma A and Diepers H J 2004 Phys. Rev. E 69 051607
[25] Xing H, Dong X, Wang J and Jin K 2018 Metall. Mater. Trans. B 49 1547
[26] Duan P P, Xing H, Chen Z, Hao G H, Wang B H and Jin K X 2015 Acta Phys. Sin. 64 060201 (in Chinese)
[1] Effect of elasticity mismatch on cell deformation and migration: A phase-field study
Yuanfeng Yin(尹元枫), Hui Xing(邢辉), Duyang Zang(臧渡洋), Kexin Jin(金克新). Chin. Phys. B, 2018, 27(11): 116201.
[2] Dendrite to symmetry-broken dendrite transition in directional solidification of non-axially oriented crystals
Xing Hui (邢辉), Wang Jian-Yuan (王建元), Chen Chang-Le (陈长乐), Jin Ke-Xin (金克新), Du Li-Fei (杜立飞). Chin. Phys. B, 2014, 23(3): 038104.
No Suggested Reading articles found!