ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Broadband third-order optical nonlinearities of layered franckeite towards mid-infrared regime |
Zhi-Qiang Xu(徐志强)1, Tian-Tian Zhou(周甜甜)1, Jie Li(李洁)2, Dong-Yang Liu(刘东阳)1, Yuan He(何源)1, Ning Li(李宁)1, Xiao Liu(刘潇)1, Li-Li Miao(缪丽丽)1,†, Chu-Jun Zhao(赵楚军)1, and Shuang-Chun Wen(文双春)1 |
1 Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China; 2 School of Mechanical and Electrical Engineering, Heze University, Heze 274015, China |
|
|
Abstract The study of nonlinear optical responses in the mid-infrared (mid-IR) regime is essential for advancing ultrafast mid-IR laser applications. However, nonlinear optical effects under mid-IR excitation are rarely reported due to the lack of suitable nonlinear optical materials. The natural van der Waals heterostructure franckeite, known for its narrow bandgap and stability in air, shows great potential for developing mid-IR nonlinear optical devices. We have experimentally demonstrated that layered franckeite exhibits a broadband wavelength-dependent nonlinear optical response in the mid-IR spectral region. Franckeite nanosheets were prepared using a liquid-phase exfoliation method, and their nonlinear optical response was characterized in the spectral range of 3000 nm to 5000 nm. The franckeite nanosheets exhibit broadband wavelength-dependent third-order nonlinearities, with nonlinear absorption and refraction coefficients estimated to be about 10$^{-7}$ cm/W and 10$^{-11}$ cm$^{2}$/W, respectively. Additionally, a passively $Q$-switched fluoride fiber laser operating around a wavelength of 2800 nm was achieved, delivering nanosecond pulses with a signal-to-noise ratio of 43.6 dB, based on the nonlinear response of franckeite. These findings indicate that layered franckeite possesses broadband nonlinear optical characteristics in the mid-IR region, potentially enabling new possibilities for mid-IR photonic devices.
|
Received: 18 June 2024
Revised: 15 July 2024
Accepted manuscript online: 08 August 2024
|
PACS:
|
42.65.-k
|
(Nonlinear optics)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
42.55.Wd
|
(Fiber lasers)
|
|
42.70.Nq
|
(Other nonlinear optical materials; photorefractive and semiconductor materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61975055), the Natural Science Foundation of Hunan Province, China (Grant No. 2023JJ30165), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2022QF005), and the Doctoral Fund of University of Heze (Grant No. XY22BS14). |
Corresponding Authors:
Li-Li Miao
E-mail: lilimiao@hnu.edu.cn
|
Cite this article:
Zhi-Qiang Xu(徐志强), Tian-Tian Zhou(周甜甜), Jie Li(李洁), Dong-Yang Liu(刘东阳), Yuan He(何源), Ning Li(李宁), Xiao Liu(刘潇), Li-Li Miao(缪丽丽), Chu-Jun Zhao(赵楚军), and Shuang-Chun Wen(文双春) Broadband third-order optical nonlinearities of layered franckeite towards mid-infrared regime 2024 Chin. Phys. B 33 104208
|
[1] Chen X L, Lu X B, Deng B C, Sinai O, Shao Y C, Li C, Yuan S F, Tran V, Watanabe K, Taniguchi T, Naveh D, Yang L and Xia F N 2017 Nat. Commun. 8 1672 [2] Zhu C H, Wang F Q, Meng Y F, Yuan X, Xiu F X, Luo H Y, Wang Y Z, Li J F, Lv X J. He L, Xu Y B, Liu J F, Zhang C, Shi Y, Zhang R and Zhu S N 2017 Nat. Commun. 8 14111 [3] Ma J, Qin Z P, Xie G Q, Qian L J and Tang D Y 2019 Appl. Phys. Rev. 6 021317 [4] Li J F, Luo H Y, Wang L L, Zhao C J, Zhang H, Li H P and Liu Y 2015 Opt. Lett. 40 3659 [5] Guo Q B, Qin Z P, Wang Z, Weng Y X, Liu X F, Xie G Q and Qiu J R 2018 ACS Nano 12 12770 [6] Liu S D, Jin Y C, Lv J W, Li K, Dong L L, Wang P F, Liu J T, Lu J P, Ni Z H and Zhang B T 2024 Appl. Phys. Lett. 124 213101 [7] Liu J T, Yang F, Lu J P, Ye S, Guo H W, Nie H K, Zhang J L, He J L, Zhang B T and Ni Z H 2022 Nat. Commun. 13 3855 [8] Velický M, Toth P S, Rakowski A M, Rooney A P, Kozikov A, Woods C R, Mishchenko A, Fumagalli L, Yin J, Zólyomi V, Georgiou T, Haigh S J, Novoselov K S and Dryfe R A W 2017 Nat. Commun. 8 14410 [9] Molina-Mendoza A J, Giovanelli E, Paz W S, Nino M A, Island J O, Evangeli C, Aballe L, Foerster M, van der Zant H S J, Rubio-Bollinger G, Agrait N, Palacios J J, Perez E M and Castellanos-Gomez A 2017 Nat. Commun. 8 14409 [10] Ray K, Yore A E, Mou T, Jha S, Smithe K K H, Wang B, Pop E and Newaz A K M 2017 ACS Nano 11 6024 [11] Frisenda R, Sanchez-Santolino G, Papadopoulos N, Urban J, Baranowski M, Surrente A, Maude D K, Garcia-Hernandez M, van der Zant H S J, Plochocka P, San-Jose P and Castellanos-Gomez A 2020 Nano Lett. 20 1141 [12] Dasgupta A, Gao J and Yang X D 2021 npj 2D Mater. Appl. 5 74 [13] Dasgupta A, Gao J and Yang X D 2021 Adv. Mater. Interfaces 8 2101106 [14] Dasgupta A, Yang X D and Gao J 2021 npj 2D Mater. Appl. 5 88 [15] Tripathi R P N, Gao J and Yang X D 2021 Sci. Rep. 11 8510 [16] Tripathi R P N, Yang X D and Gao J 2021 Sci. Rep. 11 21895 [17] Li J, Du L, Huang J, He Y, Yi J, Miao L L, Zhao C J and Wen S C 2020 Nanophotonics 10 927 [18] Li J, Yang K, Du L, Yi J, Huang J, Zhang J R, He Y, Huang B, Miao L L, Zhao C J and Wen S C 2020 Adv. Opt. Mater. 8 2000382 [19] Paz W S, Menezes M G, Batista N N, Sanchez-Santolino G, Velický M, Varela M, Capaz R B and Palacios J J 2021 Nano Lett. 21 7781 [20] Padilha J E, Fazzio A and da Silva A J R 2015 Phys. Rev. Lett. 114 066803 [21] Burzurí E, Vera-Hidalgo M, Giovanelli E, Villalva J, CastellanosGomez A and Pérez E M 2018 Nanoscale 10 7966 [22] Gusmão R, Sofer Z, Luxa J and Pumera M 2018 J. Mater. Chem. A 6 16590 [23] Gan S W, Zhao Y T, Dai X Y and Xiang Y J 2019 Results Phys. 13 102320 [24] Karki B, Sharma S, Singh Y and Pal A 2021 Plasmonics 17 71 [25] Zhao H X, Li P, Li M, Xu L W, Hu Q Y, Zhang B, Liu J and Chen X H 2022 Opt. Mater. Express 12 2844 [26] Xu Z R, Xu Z Q, Li N and Zhao C J 2023 Results Phys. 49 106492 [27] Yi H H, Yao Y L, Zhang X and Ma G L 2023 Chin. Phys. B 32 100509 [28] Sheik-Bahae M, Said A A, Wei T H, Hagan D J and Van Stryland E W V 1990 IEEE J. Quantum Electron. 26 760 [29] Song M M, Huang Y F, Hao R X, Dong J H, Wu W S, Fu Z, Sa B S, Pei J J, Zheng J Y and Zhan H B 2022 Appl. Surf. Sci. 593 153333 [30] Wu K, Chen B H, Zhang X Y, Zhang S F, Guo C S, Li C, Xiao P S, Wang J, Zhou L J, Zou W W and Chen J P 2018 Opt. Commun. 406 214 [31] Hendry E, Hale P J, Moger J, Savchenko A K and Mikhailov S A 2010 Phys. Rev. Lett. 105 097401 [32] Biswas S, Tiwary C S, Vinod S, Kole A K, Chatterjee U, Kumbhakar P and Ajayan P M 2017 Phys. Chem. C 121 8060 [33] Ebrahimzadeh M, Haghighatzadeh A and Dutta J 2021 Opt. Laser Technol. 140 107092 [34] Chen P, Zuo Y H, Tu X G, Cai D J, Li S P, Kang J Y, Yu Y D, Yu J Z and Wang Q M 2008 Appl. Phys. Lett. 92 161112 [35] Can-Uc B, López J, Lizarraga-Medina E G, Borbon-Nuñez H A, Rangel-Rojo R, Marquez H, Tiznado H, Jurado-Gonzalez J A and Hirata-Flores G 2019 Opt. Express 27 17359 [36] Yang D, Lu C H, Ma J Y, Luo M W, Zhao Q Y, Jin Y P and Xu X L 2021 Appl. Suf. Sci. 538 147989 [37] Lv H Y, Chu L R, Sun X L and Chen F 2023 Mater. Lett. 349 134839 [38] Xiao S, Wang H, Qin Y L, Li X Q, Xin H, Wang G, Hu L, Wang Y W, Li Y J, Qi W H and He J 2020 Physica B 594 412364 [39] Tian X L, Luo H Y, Wei R F, Zhu C H, Guo Q Y, Yang D D, Wang F Q, Li J F and Qiu J R 2018 Adv. Mater. 30 1801021 [40] Hurlbut W C, Lee Y S, Vodopyanov K L, Kuo P S and Fejer M M 2007 Opt. Lett. 32 668 [41] Wang K P, Szydłowska B M, Wang G Z, Zhang X Y, Wang J J, Magan J J, Zhang L, Coleman J N, Wang J and Blau W J 2016 ACS Nano 10 6923 [42] Demetriou G, Bookey H T, Biancalana F, Abraham E, Wang Y, Ji W and Kar A K 2016 Opt. Express 24 13033 [43] Wang M X, Wang Y, Wu Y, Ma H, Jiang H, Zhao Y N, Peng Y J, Li W K, Len Y X, Yu K M and Shao J D 2024 Adv. Funct. Mater. 34 2307234 [44] Huang J, Liu D Y, Chen L L, Li N, Miao L L and Zhao C J 2022 Opt. Lett. 47 6413 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|