Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 104208    DOI: 10.1088/1674-1056/ad6ccb
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Broadband third-order optical nonlinearities of layered franckeite towards mid-infrared regime

Zhi-Qiang Xu(徐志强)1, Tian-Tian Zhou(周甜甜)1, Jie Li(李洁)2, Dong-Yang Liu(刘东阳)1, Yuan He(何源)1, Ning Li(李宁)1, Xiao Liu(刘潇)1, Li-Li Miao(缪丽丽)1,†, Chu-Jun Zhao(赵楚军)1, and Shuang-Chun Wen(文双春)1
1 Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China;
2 School of Mechanical and Electrical Engineering, Heze University, Heze 274015, China
Abstract  The study of nonlinear optical responses in the mid-infrared (mid-IR) regime is essential for advancing ultrafast mid-IR laser applications. However, nonlinear optical effects under mid-IR excitation are rarely reported due to the lack of suitable nonlinear optical materials. The natural van der Waals heterostructure franckeite, known for its narrow bandgap and stability in air, shows great potential for developing mid-IR nonlinear optical devices. We have experimentally demonstrated that layered franckeite exhibits a broadband wavelength-dependent nonlinear optical response in the mid-IR spectral region. Franckeite nanosheets were prepared using a liquid-phase exfoliation method, and their nonlinear optical response was characterized in the spectral range of 3000 nm to 5000 nm. The franckeite nanosheets exhibit broadband wavelength-dependent third-order nonlinearities, with nonlinear absorption and refraction coefficients estimated to be about 10$^{-7}$ cm/W and 10$^{-11}$ cm$^{2}$/W, respectively. Additionally, a passively $Q$-switched fluoride fiber laser operating around a wavelength of 2800 nm was achieved, delivering nanosecond pulses with a signal-to-noise ratio of 43.6 dB, based on the nonlinear response of franckeite. These findings indicate that layered franckeite possesses broadband nonlinear optical characteristics in the mid-IR region, potentially enabling new possibilities for mid-IR photonic devices.
Keywords:  third-order optical nonlinearities      franckeite      mid-infrared      $Q$-switching  
Received:  18 June 2024      Revised:  15 July 2024      Accepted manuscript online:  08 August 2024
PACS:  42.65.-k (Nonlinear optics)  
  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.55.Wd (Fiber lasers)  
  42.70.Nq (Other nonlinear optical materials; photorefractive and semiconductor materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61975055), the Natural Science Foundation of Hunan Province, China (Grant No. 2023JJ30165), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2022QF005), and the Doctoral Fund of University of Heze (Grant No. XY22BS14).
Corresponding Authors:  Li-Li Miao     E-mail:  lilimiao@hnu.edu.cn

Cite this article: 

Zhi-Qiang Xu(徐志强), Tian-Tian Zhou(周甜甜), Jie Li(李洁), Dong-Yang Liu(刘东阳), Yuan He(何源), Ning Li(李宁), Xiao Liu(刘潇), Li-Li Miao(缪丽丽), Chu-Jun Zhao(赵楚军), and Shuang-Chun Wen(文双春) Broadband third-order optical nonlinearities of layered franckeite towards mid-infrared regime 2024 Chin. Phys. B 33 104208

[1] Chen X L, Lu X B, Deng B C, Sinai O, Shao Y C, Li C, Yuan S F, Tran V, Watanabe K, Taniguchi T, Naveh D, Yang L and Xia F N 2017 Nat. Commun. 8 1672
[2] Zhu C H, Wang F Q, Meng Y F, Yuan X, Xiu F X, Luo H Y, Wang Y Z, Li J F, Lv X J. He L, Xu Y B, Liu J F, Zhang C, Shi Y, Zhang R and Zhu S N 2017 Nat. Commun. 8 14111
[3] Ma J, Qin Z P, Xie G Q, Qian L J and Tang D Y 2019 Appl. Phys. Rev. 6 021317
[4] Li J F, Luo H Y, Wang L L, Zhao C J, Zhang H, Li H P and Liu Y 2015 Opt. Lett. 40 3659
[5] Guo Q B, Qin Z P, Wang Z, Weng Y X, Liu X F, Xie G Q and Qiu J R 2018 ACS Nano 12 12770
[6] Liu S D, Jin Y C, Lv J W, Li K, Dong L L, Wang P F, Liu J T, Lu J P, Ni Z H and Zhang B T 2024 Appl. Phys. Lett. 124 213101
[7] Liu J T, Yang F, Lu J P, Ye S, Guo H W, Nie H K, Zhang J L, He J L, Zhang B T and Ni Z H 2022 Nat. Commun. 13 3855
[8] Velický M, Toth P S, Rakowski A M, Rooney A P, Kozikov A, Woods C R, Mishchenko A, Fumagalli L, Yin J, Zólyomi V, Georgiou T, Haigh S J, Novoselov K S and Dryfe R A W 2017 Nat. Commun. 8 14410
[9] Molina-Mendoza A J, Giovanelli E, Paz W S, Nino M A, Island J O, Evangeli C, Aballe L, Foerster M, van der Zant H S J, Rubio-Bollinger G, Agrait N, Palacios J J, Perez E M and Castellanos-Gomez A 2017 Nat. Commun. 8 14409
[10] Ray K, Yore A E, Mou T, Jha S, Smithe K K H, Wang B, Pop E and Newaz A K M 2017 ACS Nano 11 6024
[11] Frisenda R, Sanchez-Santolino G, Papadopoulos N, Urban J, Baranowski M, Surrente A, Maude D K, Garcia-Hernandez M, van der Zant H S J, Plochocka P, San-Jose P and Castellanos-Gomez A 2020 Nano Lett. 20 1141
[12] Dasgupta A, Gao J and Yang X D 2021 npj 2D Mater. Appl. 5 74
[13] Dasgupta A, Gao J and Yang X D 2021 Adv. Mater. Interfaces 8 2101106
[14] Dasgupta A, Yang X D and Gao J 2021 npj 2D Mater. Appl. 5 88
[15] Tripathi R P N, Gao J and Yang X D 2021 Sci. Rep. 11 8510
[16] Tripathi R P N, Yang X D and Gao J 2021 Sci. Rep. 11 21895
[17] Li J, Du L, Huang J, He Y, Yi J, Miao L L, Zhao C J and Wen S C 2020 Nanophotonics 10 927
[18] Li J, Yang K, Du L, Yi J, Huang J, Zhang J R, He Y, Huang B, Miao L L, Zhao C J and Wen S C 2020 Adv. Opt. Mater. 8 2000382
[19] Paz W S, Menezes M G, Batista N N, Sanchez-Santolino G, Velický M, Varela M, Capaz R B and Palacios J J 2021 Nano Lett. 21 7781
[20] Padilha J E, Fazzio A and da Silva A J R 2015 Phys. Rev. Lett. 114 066803
[21] Burzurí E, Vera-Hidalgo M, Giovanelli E, Villalva J, CastellanosGomez A and Pérez E M 2018 Nanoscale 10 7966
[22] Gusmão R, Sofer Z, Luxa J and Pumera M 2018 J. Mater. Chem. A 6 16590
[23] Gan S W, Zhao Y T, Dai X Y and Xiang Y J 2019 Results Phys. 13 102320
[24] Karki B, Sharma S, Singh Y and Pal A 2021 Plasmonics 17 71
[25] Zhao H X, Li P, Li M, Xu L W, Hu Q Y, Zhang B, Liu J and Chen X H 2022 Opt. Mater. Express 12 2844
[26] Xu Z R, Xu Z Q, Li N and Zhao C J 2023 Results Phys. 49 106492
[27] Yi H H, Yao Y L, Zhang X and Ma G L 2023 Chin. Phys. B 32 100509
[28] Sheik-Bahae M, Said A A, Wei T H, Hagan D J and Van Stryland E W V 1990 IEEE J. Quantum Electron. 26 760
[29] Song M M, Huang Y F, Hao R X, Dong J H, Wu W S, Fu Z, Sa B S, Pei J J, Zheng J Y and Zhan H B 2022 Appl. Surf. Sci. 593 153333
[30] Wu K, Chen B H, Zhang X Y, Zhang S F, Guo C S, Li C, Xiao P S, Wang J, Zhou L J, Zou W W and Chen J P 2018 Opt. Commun. 406 214
[31] Hendry E, Hale P J, Moger J, Savchenko A K and Mikhailov S A 2010 Phys. Rev. Lett. 105 097401
[32] Biswas S, Tiwary C S, Vinod S, Kole A K, Chatterjee U, Kumbhakar P and Ajayan P M 2017 Phys. Chem. C 121 8060
[33] Ebrahimzadeh M, Haghighatzadeh A and Dutta J 2021 Opt. Laser Technol. 140 107092
[34] Chen P, Zuo Y H, Tu X G, Cai D J, Li S P, Kang J Y, Yu Y D, Yu J Z and Wang Q M 2008 Appl. Phys. Lett. 92 161112
[35] Can-Uc B, López J, Lizarraga-Medina E G, Borbon-Nuñez H A, Rangel-Rojo R, Marquez H, Tiznado H, Jurado-Gonzalez J A and Hirata-Flores G 2019 Opt. Express 27 17359
[36] Yang D, Lu C H, Ma J Y, Luo M W, Zhao Q Y, Jin Y P and Xu X L 2021 Appl. Suf. Sci. 538 147989
[37] Lv H Y, Chu L R, Sun X L and Chen F 2023 Mater. Lett. 349 134839
[38] Xiao S, Wang H, Qin Y L, Li X Q, Xin H, Wang G, Hu L, Wang Y W, Li Y J, Qi W H and He J 2020 Physica B 594 412364
[39] Tian X L, Luo H Y, Wei R F, Zhu C H, Guo Q Y, Yang D D, Wang F Q, Li J F and Qiu J R 2018 Adv. Mater. 30 1801021
[40] Hurlbut W C, Lee Y S, Vodopyanov K L, Kuo P S and Fejer M M 2007 Opt. Lett. 32 668
[41] Wang K P, Szydłowska B M, Wang G Z, Zhang X Y, Wang J J, Magan J J, Zhang L, Coleman J N, Wang J and Blau W J 2016 ACS Nano 10 6923
[42] Demetriou G, Bookey H T, Biancalana F, Abraham E, Wang Y, Ji W and Kar A K 2016 Opt. Express 24 13033
[43] Wang M X, Wang Y, Wu Y, Ma H, Jiang H, Zhao Y N, Peng Y J, Li W K, Len Y X, Yu K M and Shao J D 2024 Adv. Funct. Mater. 34 2307234
[44] Huang J, Liu D Y, Chen L L, Li N, Miao L L and Zhao C J 2022 Opt. Lett. 47 6413
[1] Manganese dioxide as wide adaptive ultrafast photonic device for pulsed laser generation
Xin-He Dou(窦鑫河), Zhen Chen(陈震), Chen-Yan Zhang(张辰妍), Xiang Li(李响), Fei-Hong Qiao(乔飞鸿), Bo-Le Song(宋博乐), Shan Wang(王珊), Hao Teng(滕浩), and Zhi-Guo Lv(吕志国). Chin. Phys. B, 2024, 33(11): 114202.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[4] High-power xenon lamp-pumped Er:YAP pulse laser operated in free-running and acousto-optical Q-switching modes
Cong Quan(权聪), Dunlu Sun(孙敦陆), Huili Zhang(张会丽), Jianqiao Luo(罗建乔), Zhiyuan Han(韩志远), Yang Qiao(乔阳), Yuwei Chen(陈玙威), Zhentao Wang(王镇涛), Maojie Cheng(程毛杰), and Qingli Zhang(张庆礼). Chin. Phys. B, 2023, 32(11): 114207.
[5] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[6] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[7] Ultrabroadband mid-infrared emission from Cr2+:ZnSe-doped chalcogenide glasses prepared via hot uniaxial pressing and melt-quenching
Ke-Lun Xia(夏克伦), Guang Jia(贾光), Hao-Tian Gan(甘浩天), Yi-Ming Gui(桂一鸣), Xu-Sheng Zhang(张徐生), Zi-Jun Liu(刘自军), and Xiang Shen(沈祥). Chin. Phys. B, 2021, 30(9): 094208.
[8] Omnidirectional and compact Tamm phonon-polaritons enhanced mid-infrared absorber
Xiaomin Hua(花小敏), Gaige Zheng(郑改革), Fenglin Xian(咸冯林), Dongdong Xu(徐董董), and Shengyao Wang(王升耀). Chin. Phys. B, 2021, 30(8): 084202.
[9] Mid-infrared supercontinuum generation and its application on all-optical quantization with different input pulses
Yan Li(李妍), Xinzhu Sang(桑新柱). Chin. Phys. B, 2019, 28(5): 054206.
[10] Experimental and numerical investigation of mid-infrared laser in Pr3+-doped chalcogenide fiber
Hua Chen(陈华), Ke-Lun Xia(夏克伦), Zi-Jun Liu(刘自军), Xun-Si Wang(王训四), Xiang-Hua Zhang(章向华), Yin-Sheng Xu(许银生), Shi-Xun Dai(戴世勋). Chin. Phys. B, 2019, 28(2): 024209.
[11] High performance GaSb based digital-grown InGaSb/AlGaAsSb mid-infrared lasers and bars
Sheng-Wen Xie(谢圣文), Yu Zhang(张宇), Cheng-Ao Yang(杨成奥), Shu-Shan Huang(黄书山), Ye Yuan(袁野), Yi Zhang(张一), Jin-Ming Shang(尚金铭), Fu-Hui Shao(邵福会), Ying-Qiang Xu(徐应强), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(1): 014208.
[12] Magneto optics and time resolved terahertz spectrocopy
T Dong(董涛), Z G Chen(谌志国), N L Wang(王楠林). Chin. Phys. B, 2018, 27(7): 077501.
[13] Mid-infrared luminescence of Dy3+-doped Ga2S3-Sb2S3-CsI chalcohalide glasses
Anping Yang(杨安平), Jiahua Qiu(邱嘉桦), Mingjie Zhang(张鸣杰), Mingyang Sun(孙明阳), Zhiyong Yang(杨志勇). Chin. Phys. B, 2018, 27(7): 077105.
[14] Highly-sensitive NO, NO2, and NH3 measurements with an open-multipass cell based on mid-infrared wavelength modulation spectroscopy
Xiang Chen(陈祥), Chen-Guang Yang(杨晨光), Mai Hu(胡迈), Jian-Kang Shen(沈建康), Er-Chao Niu(牛二超), Zhen-Yu Xu(许振宇), Xue-Li Fan(范雪丽), Min Wei(魏敏), Lu Yao(姚路), Ya-Bai He(何亚柏), Jian-Guo Liu(刘建国), Rui-Feng Kan(阚瑞峰). Chin. Phys. B, 2018, 27(4): 040701.
[15] Double-rod metasurface for mid-infrared polarization conversion
Yang Pu(蒲洋), Yi Luo(罗意), Lu Liu(刘路), De He(何德), Hongyan Xu(徐洪艳), Hongwei Jing(景洪伟), Yadong Jiang(蒋亚东), Zhijun Liu(刘志军). Chin. Phys. B, 2018, 27(2): 024202.
No Suggested Reading articles found!