ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Supercontinuum generation of highly nonlinear fibers pumped by 1.57-μm laser soliton |
Song-Tao Fan(樊松涛)1,2, Yan-Yan Zhang(张颜艳)1,2, Lu-Lu Yan(闫露露)1,2, Wen-Ge Guo(郭文阁)1, Shou-Gang Zhang(张首刚)1,2, Hai-Feng Jiang(姜海峰)1,2 |
1 Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China;
2 School of Astronomy and Space Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract Highly nonlinear fibers (HNLFs) are crucial components for supercontinuum (SC) generation with laser solution. However, it is difficult to exactly estimate the structure of produced SC according to material parameters. To give a guideline for choosing and using HNLFs for erbium-fiber-based optical applications, we demonstrate SC generation in five types of HNLFs pumped by 1.57-μm laser solitons. All five fibers output a SC exceeding 1000 nm. Three different SC formation processes were observed in the experiment. By comparing optical parameters of these fibers, we find the zero dispersion wavelength (ZDW) of fiber has an important influence on the SC structure and energy distribution for a given pump source.
|
Received: 08 March 2019
Revised: 26 March 2019
Accepted manuscript online:
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
|
42.62.Eh
|
(Metrological applications; optical frequency synthesizers for precision spectroscopy)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91536217 and 61825505). |
Corresponding Authors:
Hai-Feng Jiang
E-mail: haifeng.jiang@ntsc.ac.cn
|
Cite this article:
Song-Tao Fan(樊松涛), Yan-Yan Zhang(张颜艳), Lu-Lu Yan(闫露露), Wen-Ge Guo(郭文阁), Shou-Gang Zhang(张首刚), Hai-Feng Jiang(姜海峰) Supercontinuum generation of highly nonlinear fibers pumped by 1.57-μm laser soliton 2019 Chin. Phys. B 28 064204
|
[1] |
Takara H, Ohara T, Yamamoto T, Masuda H, Abe M, Takahashi H and Morioka T 2005 Electron. Lett. 41 270
|
[2] |
Morioka T, Mori K and Song Saruwatari M 1993 Electron. Lett. 29 862
|
[3] |
Wu J, Peng C, Li Y P and Wang Z Y 2009 Chin. Phys. Lett. 26 014209
|
[4] |
Cimalla P, Walther J, Mehner M, Cuevas M and Cuevas M 2009 Opt. Express 17 19486
|
[5] |
Hartl I, Li X D, Chudoba C, Ghanta R K, Ko T H, Fujimoto J G, Ranka J K and Windeler R S 2001 Opt. Lett. 26 608
|
[6] |
Ranka J K, Windeler R S and Stentz A J 2000 Opt. Lett. 25 25
|
[7] |
Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L and Cundiff S T 2009 Science 288 635
|
[8] |
Lau R K, Lamont M R, Griffith A G, Okawachi Y, Lipson M and Gaeta A L 2014 Opt. Lett. 39 4518
|
[9] |
Ye Jun, Schnatz H and Hollberg L W 2003 IEEE J. Sel. Top. Quantum Electron. 9 1041
|
[10] |
Xie Y, Han H N, Zhang L, Yu Z J, ZHU Z, Hou L, Pang L H and Wei Z Y 2016 Chin. Phys. B 25 044208
|
[11] |
Sanders S T 2002 Appl. Phys. B 75 799
|
[12] |
Ere-Tassou M, Przygodzki C, Fertein E and Delbarre H 2002 Opt. Commun. 220 215
|
[13] |
Genty G, Lehtonen M, Ludvigsen H, Broeng J and Kaivola M 2002 Opt. Express 10 1083
|
[14] |
Akimov D A, Ivanov A A, Alfimov M V, Bagayev S N, Birks T A, Wadsworth W J, Russell P St J, Fedotov A B, Pivtsov V S and Podshivalov A A 2001 JETP Lett. 74 460
|
[15] |
Washburn B, Ralph S and Windeler R 2002 Opt. Express 10 575
|
[16] |
Ortigosablanch A, Knight J C and Russell P St J 2002 J. Opt. Soc. Am. B 19 2567
|
[17] |
Reeves W H, Skryabin D V, Biancalana F, Knight J C, Russell P S, Omenetto F G, Efimov A and Taylor A J 2003 Nature 424 511
|
[18] |
Abeeluck A K and Headley C 2005 Opt. Lett. 30 61
|
[19] |
Dudley J, Genty G and Coen S 2006 Rev. Mod. Phys. 78 1135
|
[20] |
Lezius M, Wilken T and Deutsch C, et al. 2016 Optica 3 1381
|
[21] |
Sinclair L C, Coddington I, Swann W C, Rieker G B, Hati A, Iwakuni K and Newbury N R 2014 Opt. Express 22 6996
|
[22] |
Zhang Y Y, Yan L L, Zhao W Y, Meng S, Fan S T, Zhang L, Guo W G, Zhang S G and Jiang H F 2015 Chin. Phys. B 24 366
|
[23] |
Yin L, Lin Q and Agrawal G P 2007 Opt. Lett. 32 391
|
[24] |
Gordon J P 1986 Opt. Lett. 11
|
[25] |
Husakou A V and Herrmann J 2001 Phys. Rev. Lett. 87 203901
|
[26] |
Herrmann J, Griebner D, Zhavoronkov N, Husakou A, Nickel D, Korn G, Knight J G, Wadsworth W J and Russet P St J 2002 Phys. Rev. Lett. 88 799
|
[27] |
Husakou A V and Herrmann J 2002 J. Opt. Soc. Am. B 19 2171
|
[28] |
Wai P K, Menyuk C R, Lee Y C and Chen H H 1986 Opt. Lett. 11 464
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|