Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(10): 104204    DOI: 10.1088/1674-1056/ad21f2
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Presentation of the Berry-Tabor conjecture in Lévy plates

Chao Li(李超) and Guo-Lin Hou(侯国林)†
School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China
Abstract  The Berry-Tabor (BT) conjecture is a famous statistical inference in quantum chaos, which not only establishes the spectral fluctuations of quantum systems whose classical counterparts are integrable but can also be used to describe other wave phenomena. In this paper, the BT conjecture has been extended to Lévy plates. As predicted by the BT conjecture, level clustering is present in the spectra of Lévy plates. The consequence of level clustering is studied by introducing the distribution of nearest neighbor frequency level spacing ratios $P\left({\widetilde r} \right)$, which is calculated through the analytical solution obtained by the Hamiltonian approach. Our work investigates the impact of varying foundation parameters, rotary inertia, and boundary conditions on the frequency spectra, and we find that $P\left({\widetilde r} \right)$ conforms to a Poisson distribution in all cases. The reason for the occurrence of the Poisson distribution in the Lévy plates is the independence between modal frequencies, which can be understood through mode functions.
Keywords:  Berry-Tabor conjecture      frequency spectra      Hamiltonian approach      Lévy plates  
Received:  10 October 2023      Revised:  14 December 2023      Accepted manuscript online:  24 January 2024
PACS:  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  47.10.Df (Hamiltonian formulations)  
  33.20.Tp (Vibrational analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12261064 and 11861048), the Natural Science Foundation of Inner Mongolia, China (Grant No. 2021MS01004), and the Innovation Program for Graduate Education of Inner Mongolia University (Grant No. 11200-5223737).
Corresponding Authors:  Guo-Lin Hou     E-mail:  smshgl@imu.edu.cn

Cite this article: 

Chao Li(李超) and Guo-Lin Hou(侯国林) Presentation of the Berry-Tabor conjecture in Lévy plates 2024 Chin. Phys. B 33 104204

[1] Brody T A, Flores J, French J B, Mello P A, Pandey A and Wong S S M 1981 Rev. Mod. Phys. 53 385
[2] Müller S, Heusler S, Altland A, Braun P and Haake F 2009 New J. Phys. 11 103025
[3] Porter C E 1965 Fluctuations of Quantal Spectra (New York: Academic Press) p. 8
[4] Berry M V, Tabor and Ziman J M 1977 Proc. R. Soc. 356 375
[5] Casati G, Chirikov B V and Guarneri I 1985 Phys. Rev. Lett. 54 1350
[6] Bohigas O, Giannoni M J and Schmit C 1984 Phys. Rev. Lett. 52 1
[7] Mehta M L 1990 Random Matrix Theory, 3rd Edn. (New York: Springer) p. 13
[8] Stöckmann H J and Stein J 1990 Phys. Rev. Lett. 64 2215
[9] Frank O and Eckhardt B 1996 Phys. Rev. E 53 4166
[10] Mohammadesmaeili R, Motaghian S and Mofid M 2021 Eur. J. Mech. A Solids 88 104274
[11] Nguyen P, Pham Q H, Tran T T and Nguyen T 2022 Ain Shams Eng. J. 13 101615
[12] Warburton G B and Edney S L 1984 J. Sound Vib. 95 537
[13] Leissa A 1969 Vibration of Plates (NASA: Scientific and Technical Information Division)
[14] Biancolini M E, Brutti C and Reccia l 2005 J. Sound Vib. 288 321
[15] Ellegaard C, Guhr T, Lindemann K, Lorensen H Q, Nygard J and Oxborrow M 1995 Phys. Rev. Lett. 75 1546
[16] Bertelsen P, Ellegaard C and Hugues E 2000 Eur. Phys. J. B 15 18
[17] Andersen A, Ellegaard C, Jackson A D and Schaadt K 2001 Phys. Rev. E 63 066204
[18] Sondergaard, Niels and Tanner Gregor 2002 Phys. Rev. E 66 066211
[19] Gregor Tanner and Niels Søndergaard 2007 J. Phys. A: Math. Theor. 40 R443
[20] López-González J L, Franco-Villafañe J A, Méndez-Sánchez R A, Zavala-Vivar G, Flores-Olmedo E, Arreola-Lucas A and Báez G 2021 Phys. Rev. E 103 043004
[21] Timoshenko SP and Woinowsky-Krieger SW 1959 Theory of plates and shells (New York: McGraw-Hill) p. 180
[22] Reddy J N 2007 Theory and Analysis of Elastic plates and Shells, 2nd Edn. (New York: CRC Press) p. 331
[23] Hetenyi Miklos 1946 Beams on Elastic Foundation: Theory with Applications in the Fields of Civil and Mechanical Engineering (Ann Arbor: University of Michigan Press) p. 179
[24] Qiao Y F, Hou G L and Chen A 2021 Appl. Math. Model. 89 1124
[25] Qiao Y F, Hou G L and Chen A 2021 Appl. Math. Comput. 400 126043
[26] Sun Z Q, Hou G L, Qiao Y F and Liu J C 2023 Chin. Phys. B 33 016107
[27] Yao W A, Zhong W X and Lim C W 2009 Symplectic Elasticity (Singapore: World Scientific) p. 71
[28] Zhong Y, Li R, Liu Y M and Tian B 2009 Int. J. Solids Struct. 46 2506
[29] Su X, Bai E and Chen A 2021 Int. J. Struct. Stab. Dyn. 21 2150122
[30] Su X and Bai E 2022 J. Vib. Control. 28 3
[31] Leissa A W 1973 J. Sound Vib. 31 257
[32] Omurtag M H and Kadıolu F 1998 Comput. Struct. 67 253
[33] Matsushita T and Terasaka T 1984 Chem. Phys. Lett. 105 511
[34] Richens P J and Berry M V 1981 Physica D 2 495
[35] Robnik M 1987 J. Phys. A: Math. Gen. 20 L495
[36] Dietz B and Haake F 1990 Z. Phys. B 80 153
[37] Pechukas P 1983 Phys. Rev. Lett. 51 943
[38] Oganesyan V and David A H 2007 Phys. Rev. B 75 155111
[39] Atas Y Y, Bogomolny E, Giraud O and Roux G 2013 Phys. Rev. Lett. 110 084101
[40] Atas Y Y, Bogomolny E, Giraud O and Roux G 2013 J. Phys. A: Math. Theor. 46 355204
[41] Bogomolny E and Hugues E 1998 Phys. Rev. E 57 5404
[1] Imaging a force field via an optically levitated nanoparticle array
Bihu Lv(吕碧沪), Jiandong Zhang(张建东), and Chuang Li(李闯). Chin. Phys. B, 2024, 33(9): 090702.
[2] Effects of quantum noise on teleportation of arbitrary two-qubit state via five-particle Brown state
Ao Wang(汪澳), Yu-Zhen Wei(魏玉震), Min Jiang(姜敏), Yong-Cheng Li(李泳成), Hong Chen(陈虹), and Xu Huang(黄旭). Chin. Phys. B, 2024, 33(8): 080307.
[3] Broadband multi-channel quantum noise suppression and phase-sensitive modulation based on entangled beam
Ke Di(邸克), Shuai Tan(谈帅), Anyu Cheng(程安宇), Yu Liu(刘宇), and Jiajia Du(杜佳佳). Chin. Phys. B, 2023, 32(10): 100302.
[4] Quantum estimation of rotational speed in optomechanics
Hao Li(李浩) and Jiong Cheng(程泂). Chin. Phys. B, 2023, 32(10): 100602.
[5] Rapid stabilization of stochastic quantum systems in a unified framework
Jie Wen(温杰), Fangmin Wang(王芳敏), Yuanhao Shi(史元浩), Jianfang Jia(贾建芳), and Jianchao Zeng(曾建潮). Chin. Phys. B, 2023, 32(7): 070203.
[6] Tunable phonon-atom interaction in a hybrid optomechanical system
Yao Li(李耀), Chuang Li(李闯), Jiandong Zhang(张建东), Ying Dong(董莹), and Huizhu Hu(胡慧珠). Chin. Phys. B, 2023, 32(4): 044213.
[7] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[8] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[9] Quantum exceptional points of non-Hermitian Hamiltonian and Liouvillian in dissipative quantum Rabi model
Xianfeng Ou(欧先锋), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(11): 110309.
[10] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[11] Application of non-Hermitian Hamiltonian model in open quantum optical systems
Hong Wang(王虹), Yue Qin(秦悦), Jingxu Ma(马晶旭), Heng Shen(申恒), Ying Hu(胡颖), and Xiaojun Jia(贾晓军). Chin. Phys. B, 2021, 30(5): 050301.
[12] Coherent-driving-assisted quantum speedup in Markovian channels
Xiang Lu(鹿翔), Ying-Jie Zhang(张英杰), and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(2): 020301.
[13] Tunable ponderomotive squeezing in an optomechanical system with two coupled resonators
Qin Wu(吴琴). Chin. Phys. B, 2021, 30(2): 020303.
[14] Dissipative preparation of multipartite Greenberger-Horne-Zeilinger states of Rydberg atoms
Chong Yang(杨崇), Dong-Xiao Li(李冬啸), and Xiao-Qiang Shao(邵晓强). Chin. Phys. B, 2021, 30(2): 023201.
[15] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
No Suggested Reading articles found!