CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Quantum confinement and surface chemistry of 0.8-1.6 nm hydrosilylated silicon nanocrystals |
Pi Xiao-Dong (皮孝东), Wang Rong (王蓉), Yang De-Ren (杨德仁) |
State Key Laboratory of Silicon Materials and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract In the framework of density functional theory (DFT), we have studied the electronic properties of alkene/alkyne-hydrosilylated silicon nanocrystals (Si NCs) in the size range from 0.8 nm to 1.6 nm. Among the alkenes with all kinds of functional groups considered in this work, only those containing -NH2 and -C4H3S lead to significant hydrosilylation-induced changes in the gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of an Si NC at the ground state. The quantum confinement effect is dominant for all of the alkene-hydrosilylated Si NCs at the ground state. At the excited state, the prevailing effect of surface chemistry only occurs at the smallest (0.8 nm) Si NCs hydrosilylated with alkenes containing -NH2 and -C4H3S. Although the alkyne hydrosilylation gives rise to a more significant surface chemistry effect than alkene hydrosilylation, the quantum confinement effect remains dominant for alkyne-hydrosilylated Si NCs at the ground state. However, at the excited state, the effect of surface chemistry induced by the hydrosilylation with conjugated alkynes is strong enough to prevail over that of quantum confinement.
|
Received: 24 September 2013
Revised: 09 January 2014
Accepted manuscript online:
|
PACS:
|
61.46.Hk
|
(Nanocrystals)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
12.38.Aw
|
(General properties of QCD (dynamics, confinement, etc.))
|
|
47.55.dr
|
(Interactions with surfaces)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB632101), the National Natural Science Foundation of China for Excellent Young Researchers (Grant No. 61222404), the Research and Development Program of Ministry of Education of China (Grant No. 62501040202), and the 2012 UAlberta MOST Joint Research Laboratories Program, China. |
Corresponding Authors:
Yang De-Ren
E-mail: mseyang@zju.edu.cn
|
About author: 61.46.Hk; 71.15.Mb; 12.38.Aw; 47.55.dr |
Cite this article:
Pi Xiao-Dong (皮孝东), Wang Rong (王蓉), Yang De-Ren (杨德仁) Quantum confinement and surface chemistry of 0.8-1.6 nm hydrosilylated silicon nanocrystals 2014 Chin. Phys. B 23 076102
|
[1] |
Williamson A J, Grossman J C, Hood R Q, Puzder A and Galli G 2002 Phys. Rev. Lett. 89 196803
|
[2] |
Pi X D, Liptak R W, Nowak J D, Pwells N, Carter C B, Campbell S A and Kortshagen U 2008 Nanotechnology 19 245603
|
[3] |
Nunez J R R, Kelly J A, Henderson E J and Veinot J G C 2012 Chem. Mater. 24 346
|
[4] |
Zhang X H, Dong J C, Wang Y, Li L and Li H 2013 J. Phys. Chem. C 117 12958
|
[5] |
Mastronardi M L, Maier-Flaig F, Faulkner D, Henderson E J, Kübel C, Lemmer U and Ozin G A 2012 Nano Lett. 12 337
|
[6] |
Dong J C and Li H 2012 J. Phys. Chem. C 116 17259
|
[7] |
Hua F J, Swihart M T and Ruckenstein E 2005 Langmuir 21 6054
|
[8] |
Ledoux G, Guillois O, Porterat D, Reynaud C, Huisken F, Kohn B and Paillard V 2000 Phys. Rev. B 62 15942
|
[9] |
Kovalev D and Fujii M 2005 Adv. Mater. 17 2531
|
[10] |
Ni Z Y, Pi X D and Yang D 2012 Chin. Phys. Lett. 29 077801
|
[11] |
Vasiliev I, Öğüt S and Chelikowsky J R 2001 Phys. Rev. Lett. 86 1813
|
[12] |
Cullis A 1997 J. Appl. Phys. 82 909
|
[13] |
Delerue C, Allan G and Lannoo M 1993 Phys. Rev. B 48 11024
|
[14] |
Zunger A and Wang L W 1996 Appl. Surf. Sci. 102 350
|
[15] |
Kortshagen U 2009 J. Phys. D: Appl. Phys. 42 113001
|
[16] |
Veinot J G C 2006 Chem. Commun. 4160
|
[17] |
Li X G, He Y Q, Talukdar S S and Swihart M T 2003 Langmuir 19 8490
|
[18] |
Bley R A and Kauzlarich S M 1996 J. Am. Chem. Soc. 118 12461
|
[19] |
Pi X D, Zalloum O H Y, Wojcik J, Knights A P, Mascher P, Todd A D W and Simpson P J. 2005 J. Appl. Phys. 97 096108
|
[20] |
Gresback R, Nozaki T and Okazaki K 2011 Nanotechnology 22 305605
|
[21] |
Gupta A, Swihart M T and Wiggers H 2009 Adv. Funct. Mater. 19 696
|
[22] |
Mastronardi M L, Henderson E J, Puzzo D P and Ozin G A 2012 Adv. Mater. 24 5890
|
[23] |
Martínez A, Alonso J C, Sansores L E and Salcedo R 2010 J. Phys. Chem. C 114 12427
|
[24] |
Zhou Z, Brus L and Friesner R 2003 Nano Lett. 3 163
|
[25] |
Reboredo F A, Schwegler E and Galli G 2003 J. Am. Chem. Soc. 125 15243
|
[26] |
Pi X D 2012 J. Nanomater. 2012 912903
|
[27] |
Ma Y S, Chen X B, Pi X D and Yang D 2011 J. Phys. Chem. C 115 12822
|
[28] |
Zhang R Q, Li Q S, Lee S T, Niehaus T A and Frauenheim T 2008 J. Chem. Phys. 128 244714
|
[29] |
Puzder A, Williamson A J, Grossman J C and Galli G 2002 Phys. Rev. Lett. 88 097401
|
[30] |
Chao Y, Houlton A, Horrocks B R, Hunt M R C, Poolton N R J, Yang J and Siller L 2006 Appl. Phys. Lett. 88 263119
|
[31] |
Coxon P R, Wang Q and Chao Y 2011 J. Phys. D: Appl. Phys. 44 495301
|
[32] |
Belomoin G, Rogozhina E, Therrien J, Braun P V, Abuhassan L, Nayfeh M H, Wagner L and Mitas L 2002 Phys. Rev. B 65 193406
|
[33] |
Puzder A, Williamson A J, Grossman J C and Galli G 2002 J. Chem. Phys. 117 6721
|
[34] |
He Y, Su Y, Yang X, Kang Z, Xu T, Zhang R, Fan C and Lee S T 2009 J. Am. Chem. Soc. 131 4434
|
[35] |
Chen X B, Pi X D and Yang D 2010 J. Phys. Chem. C 114 8774
|
[36] |
Ma Y S, Pi X D and Yang D 2012 J. Phys. Chem. C 116 5401
|
[37] |
Wolkin M V, Jorne J, Fauchet P M, Allan G and Delerue C 1999 Phys. Rev. Lett. 82 197
|
[38] |
Gole J L, Veje E, Egeberg R G, Ferreira da Silva A, Pepe I and Dixon D A 2006 J. Phys. Chem. B 110 2064
|
[39] |
Qin C J, Huang W Q, Wang H X and Jin F 2008 Chin. Phys. B 17 3753
|
[40] |
Liu S R, Qin C J, Huang W Q, Xu L, Wang H X, Jin F, Wu K Y and Qin S J 2008 Chin. Phys. B 17 1817
|
[41] |
Wang R, Pi X D and Yang D 2012 J. Phys. Chem. C 116 19434
|
[42] |
Chen X B, Pi X D and Yang D 2011 J. Phys. Chem. C 115 661
|
[43] |
Pi X D, Chen X B, Ma Y S and Yang D 2011 Nanoscale 3 4584
|
[44] |
Jariwala B N, Dewey O S, Stradins P, Ciobanu C V and Agarwal S 2011 ACS Appl. Mater. Inter. 3 3033
|
[45] |
Calder S, Boies A, Lei P Y, Girshick S and Roberts J 2011 Chem. Mater. 23 2917
|
[46] |
Pi X D, Chen X B and Yang D 2011 J. Phys. Chem. C 115 9838
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|