Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 037302    DOI: 10.1088/1674-1056/26/3/037302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Band structure of silicon and germanium thin films based on first principles

Xue-Ke Wu(吴学科)1,2, Wei-Qi Huang(黄伟其)2, Zhong-Mei Huang(黄忠梅)3, Chao-Jian Qin(秦朝建)4, Tai-Ge Dong(董泰阁)2, Gang Wang(王刚)2, Yan-Lin Tang(唐延林)2
1 College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China;
2 Institute of Nanophotonic Physics, Guizhou University, Guiyang 550025, China;
3 State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures(Ministry of Education), and Department of Physics, Fudan University, Shanghai 200433, China;
4 State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550003, China
Abstract  In nanomaterials, optical anisotropies reveal a fundamental relationship between structural and optical properties, in which directional optical properties can be exploited to enhance the performance of optoelectronic devices. First principles calculation based on density functional theory (DFT) with the generalized gradient approximation (GGA) are carried out to investigate the energy band gap structure on silicon (Si) and germanium (Ge) nanofilms. Simulation results show that the band gaps in Si (100) and Ge (111) nanofilms become the direct-gap structure in the thickness range less than 7.64 nm and 7.25 nm respectively, but the band gaps of Si (111) and Ge (110) nanofilms still keep in an indirect-gap structure and are independent on film thickness, and the band gaps of Si (110) and Ge (100) nanofilms could be transferred into the direct-gap structure in nanofilms with smaller thickness. It is amazing that the band gaps of Si(1-x)/2GexSi(1-x)/2 sandwich structure become the direct-gap structure in a certain area whether (111) or (100) surface. The band structure change of Si and Ge thin films in three orientations is not the same and the physical mechanism is very interesting, where the changes of the band gaps on the Si and Ge nanofilms follow the quantum confinement effects.
Keywords:  direct band gap      first principles calculation      quantum confinement effect      nanofilms  
Received:  19 September 2016      Revised:  30 November 2016      Accepted manuscript online: 
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  78.66.Db (Elemental semiconductors and insulators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11264007 and 61465003).
Corresponding Authors:  Wei-Qi Huang, Yan-Lin Tang     E-mail:  wqhang@gzu.edu.cn;tylgzu@163.com

Cite this article: 

Xue-Ke Wu(吴学科), Wei-Qi Huang(黄伟其), Zhong-Mei Huang(黄忠梅), Chao-Jian Qin(秦朝建), Tai-Ge Dong(董泰阁), Gang Wang(王刚), Yan-Lin Tang(唐延林) Band structure of silicon and germanium thin films based on first principles 2017 Chin. Phys. B 26 037302

[1] Canham L T 1990 Appl. Phys. Lett. 57 1046
[2] Wolkin M V, Jorne J, Fauchet P M, Allan G and Delerue C 1999 Phys. Rev. Lett. 82 197
[3] Qin G G and Li Y J 2003 Phys. Rev. B 68 085309
[4] Huang W Q, Huang Z M, Cheng H Q, Miao X J, Shu Q, Liu S R and Qin C J 2012 Appl. Phys. Lett. 101 171601
[5] Huang W Q, Huang Z M, Miao X J, Yin J, Zhou N J, Liu S R and Qin C J 2014 Acta Phys. Sin. 63 034201 (in Chinese)
[6] Oh Y, Lee I, Kim S, Lee J and Chang K 2015 Sci. Rep. 5 18086
[7] Canham L T, Leong W Y, Beale M I J, Cox T I and Taylor L 1992 Appl. Phys. Lett. 61 2563
[8] Mutti P, Ghislotti G, Bertoni S, Bonoldi L, Cerofolini G F, Meda L, Grilli E and Guzzi M 1995 Appl. Phys. Lett. 66 851
[9] Sham T K, Naftel S J, Kim P S G, Sammynaiken R, Tang Y H, Coulthard I, Moewes A, Freeland J W, Hu Y F and Lee S T 2004 Phys. Rev. B 70 045313
[10] Diehl L, Menteşe S, Müller E, Grützmacher D, Sigg H, Gennser U, Sagnes I, Campidelli Y, Kermarrec O, Bensahel D and Faist J 2002 Appl. Phys. Lett. 81 4700
[11] Jensen I J T, Ulyashin A G and Løvvik O M 2016 J. Appl. Phys. 119 015702
[12] Spencer M, Morishita T, Mikami M, Snook I K, Sugiyamawd Y and Nakanod H 2011 Phys. Chem. Chem. Phys. 13 15418
[13] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys. Condens. Matter 14 2717
[14] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[15] Stampfl C and van de Walle C G 1999 Phys. Rev. B 59 5521
[16] Kholod A N, Saúl A, Fuhr J D and Borisenko V E 2000 Phys. Rev. B 62 12949
[17] Kholod A N, Borisenko V E, Saúl A, Arnaud d'Avitaya F and Fuhr J 2001 Opt. Mater. 17 61
[18] Xia N, Yuan L F and Yang J 2014 Theor. Chem. Acc. 133 1535
[19] Wang X Q, Li H D and Wang J T 2012 Phys. Chem. Chem. Phys. 14 3031
[20] Wei W, Dai Y, Huang B and Jacob T 2013 Phys. Chem. Chem. Phys. 15 8789
[21] Lin L, Li Z, Feng J and Zhang Z 2013 Phys. Chem. Chem. Phys. 15 6063
[22] Proot J P, Delerue C and Allan G 1992 Appl. Phys. Lett. 61 1948
[23] Hybertsen M S 1994 Phys. Rev. Lett. 72 1514
[24] Lu Z H, Lockwood D J and Baribeau J M 1995 Nature 378 258
[25] Lockwood D J, Lu Z H and Baribeau J M 1996 Phys. Rev. Lett. 76 539
[1] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[2] First principles study of hafnium intercalation between graphene and Ir(111) substrate
Hao Peng(彭浩), Xin Jin(金鑫), Yang Song(宋洋), and Shixuan Du(杜世萱). Chin. Phys. B, 2022, 31(10): 106801.
[3] Density functional theory investigation on lattice dynamics, elastic properties and origin of vanished magnetism in Heusler compounds CoMnVZ (Z= Al, Ga)
Guijiang Li(李贵江), Enke Liu(刘恩克), Guodong Liu(刘国栋), Wenhong Wang(王文洪), and Guangheng Wu(吴光恒). Chin. Phys. B, 2021, 30(8): 083103.
[4] High-throughput identification of one-dimensional atomic wires and first principles calculations of their electronic states
Feng Lu(卢峰), Jintao Cui(崔锦韬), Pan Liu(刘盼), Meichen Lin(林玫辰), Yahui Cheng(程雅慧), Hui Liu(刘晖), Weichao Wang(王卫超), Kyeongjae Cho, and Wei-Hua Wang(王维华). Chin. Phys. B, 2021, 30(5): 057304.
[5] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[6] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[7] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[8] Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2
Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明). Chin. Phys. B, 2020, 29(6): 067201.
[9] Anisotropic elastic properties and ideal uniaxial compressive strength of TiB2 from first principles calculations
Min Sun(孙敏), Chong-Yu Wang(王崇愚), Ji-Ping Liu(刘吉平). Chin. Phys. B, 2018, 27(7): 077103.
[10] Theoretical prediction of new C-Si alloys in C2/m-20 structure
Xiangyang Xu(徐向阳), Changchun Chai(柴常春), Qingyang Fan(樊庆扬), Yintang Yang(杨银堂). Chin. Phys. B, 2017, 26(4): 046101.
[11] A hybrid functional first-principles study on the band structure of non-strained Ge1-xSnx alloys
Xiaohuai Wang(王小怀), Chengzhao Chen(陈城钊), Shengqi Feng(冯胜奇), Xinyuan Wei(魏心源), Yun Li(李云). Chin. Phys. B, 2017, 26(12): 127402.
[12] Tuning electronic properties of the S2/graphene heterojunction by strains from density functional theory
Jun-Hui Lei(雷军辉), Xiu-Fen Wang(王秀峰), Jian-Guo Lin(林建国). Chin. Phys. B, 2017, 26(12): 127101.
[13] Theoretical calculations of structural, electronic, and elastic properties of CdSe1-xTex: A first principles study
M Shakil, Muhammad Zafar, Shabbir Ahmed, Muhammad Raza-ur-rehman Hashmi, M A Choudhary, T Iqbal. Chin. Phys. B, 2016, 25(7): 076104.
[14] Mobility enhancement of strained GaSb p-channel metal—oxide—semiconductor field-effect transistorswith biaxial compressive strain
Yan-Wen Chen(陈燕文), Zhen Tan(谭桢), Lian-Feng Zhao(赵连锋), Jing Wang(王敬), Yi-Zhou Liu(刘易周),Chen Si(司晨), Fang Yuan(袁方), Wen-Hui Duan(段文晖), Jun Xu(许军). Chin. Phys. B, 2016, 25(3): 038504.
[15] Band gap anomaly and topological properties in lead chalcogenides
Simin Nie(聂思敏), Xiao Yan Xu(许霄琰), Gang Xu(徐刚), Zhong Fang(方忠). Chin. Phys. B, 2016, 25(3): 037311.
No Suggested Reading articles found!