Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 010301    DOI: 10.1088/1674-1056/ab5930
GENERAL   Next  

Coherence measures based on sandwiched Rényi relative entropy

Jianwei Xu(胥建卫)
College of Science, Northwest A&F University, Yangling 712100, China
Abstract  Coherence is a fundamental ingredient for quantum physics and a key resource for quantum information theory. Baumgratz, Cramer and Plenio established a rigorous framework (BCP framework) for quantifying coherence[Baumgratz T, Cramer M and Plenio M B Phys. Rev. Lett. 113 140401 (2014)]. In the present paper, under the BCP framework we provide two classes of coherence measures based on the sandwiched Rényi relative entropy. We also prove that we cannot get a new coherence measure f(C(·)) by a function f acting on a given coherence measure C.
Keywords:  quantum coherence      coherence measure      sandwiched Rényi relative entropy  
Received:  19 July 2019      Revised:  20 November 2019      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Aa (Quantum systems with finite Hilbert space)  
Fund: Project supported by the China Scholarship Council (Grant No. 201806305050).
Corresponding Authors:  Jianwei Xu     E-mail:  xxujianwei@nwafu.edu.cn

Cite this article: 

Jianwei Xu(胥建卫) Coherence measures based on sandwiched Rényi relative entropy 2020 Chin. Phys. B 29 010301

[1] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[2] Streltsov A, Adesso G and Plenio M B 2017 Rev. Mod. Phys. 89 041003
[3] Hu M L, Hu X, Wang J, Peng Y, Zhang Y and Fan H 2018 Phys. Rep. 762-764 1
[4] Li B M, Hu M L and Fan H 2019 Acta Phys. Sin. 68 030304 (in Chinese)
[5] Yu X D, Zhang D J, Xu G F and Tong D M 2016 Phys. Rev. A 94 060302
[6] Aberg J 2006 arXiv:0612146[quant-ph]
[7] Chitambar E and Gour G 2016 Phys. Rev. Lett. 117 030401
[8] Chitambar E and Gour G 2016 Phys. Rev. A 94 052336
[9] Marvian I and Spekkens R W 2016 Phys. Rev. A 94 052324
[10] de Vicente J I and Streltsov A 2017 J. Phys. A: Math. Theor. 50 045301
[11] Liu Z W, Hu X and Lloyd S 2017 Phys. Rev. Lett. 118 060502
[12] Winter A and Yang D 2016 Phys. Rev. Lett. 116 120404
[13] Yadin B, Ma J, Girolami D, Gu M and Vedral V 2016 Phys. Rev. X 6 041028
[14] Shao L H, Li Y M, Luo Y and Xi Z J 2017 Commun. Theor. Phys. 67 631
[15] Zhu H, Hayashi M and Chen L 2017 J. Phys. A: Math. Theor. 50 475303
[16] Bu K, Singh U, Fei S M, Pati A K and Wu J 2017 Phys. Rev. Lett. 119 150405
[17] Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403
[18] Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N and Adesso G 2016 Phys. Rev. Lett. 116 150502
[19] Piani M, Cianciaruso M, Bromley T R, Napoli C, Johnston N and Adesso G 2016 Phys. Rev. A 93 042107
[20] Yu C S 2017 Phys. Rev. A 95 042337
[21] Rastegin A E 2016 Phys. Rev. A 93 032136
[22] Zhao H and Yu C S 2018 Sci. Rep. 8 299
[23] Kollas N K 2018 Phys. Rev. A 97 062344
[24] Xiong C, Kumar A and Wu J 2018 Phys. Rev. A 98 032324
[25] Bu K, Anand N and Singh U 2018 Phys. Rev. A 97 032342
[26] Yuan X, Zhou H, Cao Z and Ma X 2015 Phys. Rev. A 92 022124
[27] Qi X, Gao T and Yan F 2017 J. Phys. A: Math. Theor. 50 285301
[28] Du S, Bai Z and Guo Y 2015 Phys. Rev. A 91 052120
[29] Du S, Bai Z and Guo Y 2017 Phys. Rev. A 95 029901(E)
[30] Zhu H, Ma Z, Cao Z, Fei S M and Vlatko Vedral 2017 Phys. Rev. A 96 032316
[31] Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett. 114 210401
[32] Yu X D, Zhang D J, Liu C L and Tong D M 2016 Phys. Rev. A 93 060303
[33] Hu M L and Fan H 2016 Sci. Rep. 6 29260
[34] Yang L W, Han W and Xia Y J 2018 Chin. Phys. B 27 040302
[35] Zhang D J, Liu C L, Yu X D and Tong D M 2018 Phys. Rev. Lett. 120 170501
[36] Wilde M M, Winter A and Yang D 2014 Commun. Math. Phys. 331 593
[37] Müller-Lennert M, Dupuis F, Szehr O, Fehr S and Tomamichel M 2013 J. Math. Phys. 54 122203
[38] Beigi S 2013 J. Math. Phys. 54 122202
[39] Frank R L and Lieb E H 2013 J. Math. Phys. 54 122201
[40] Wang X D, Rong H W and Li W R 2003 Functional equations and their applications (Shanghai: Shanghai Science and Technology Academic Press) (in Chinese)
[41] Xu J 2016 Phys. Rev. A 93 032111
[42] Buono D, Nocerino G, Petrillo G, Torre G, Zonzo G and Illuminati F 2016 arXiv:1609.00913[quant-ph]
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[3] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[4] Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞). Chin. Phys. B, 2021, 30(7): 070303.
[5] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[6] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[7] Quantifying coherence with dynamical discord
Lian-Wu Yang(杨连武) and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(12): 120304.
[8] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[9] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[10] Quantum uncertainty relations of quantum coherence and dynamics under amplitude damping channel
Fugang Zhang(张福刚), Yongming Li(李永明). Chin. Phys. B, 2018, 27(9): 090301.
[11] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[12] Robustness of coherence between two quantum dots mediated by Majorana fermions
Liang Chen(陈亮), Ye-Qi Zhang(张业奇), Rong-Sheng Han(韩榕生). Chin. Phys. B, 2018, 27(7): 077102.
[13] Classical-driving-assisted coherence dynamics and its conservation
De-Ying Gao(高德营), Qiang Gao(高强), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(6): 060304.
[14] The heat and work of quantum thermodynamic processes with quantum coherence
Shanhe Su(苏山河), Jinfu Chen(陈劲夫), Yuhan Ma(马宇翰), Jincan Chen(陈金灿), Changpu Sun(孙昌璞). Chin. Phys. B, 2018, 27(6): 060502.
[15] Comparative investigation of freezing phenomena for quantum coherence and correlations
Lian-Wu Yang(杨连武), Wei Han(韩伟), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(4): 040302.
No Suggested Reading articles found!