|
|
Coherence measures based on sandwiched Rényi relative entropy |
Jianwei Xu(胥建卫) |
College of Science, Northwest A&F University, Yangling 712100, China |
|
|
Abstract Coherence is a fundamental ingredient for quantum physics and a key resource for quantum information theory. Baumgratz, Cramer and Plenio established a rigorous framework (BCP framework) for quantifying coherence[Baumgratz T, Cramer M and Plenio M B Phys. Rev. Lett. 113 140401 (2014)]. In the present paper, under the BCP framework we provide two classes of coherence measures based on the sandwiched Rényi relative entropy. We also prove that we cannot get a new coherence measure f(C(·)) by a function f acting on a given coherence measure C.
|
Received: 19 July 2019
Revised: 20 November 2019
Accepted manuscript online:
|
PACS:
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.65.Aa
|
(Quantum systems with finite Hilbert space)
|
|
Fund: Project supported by the China Scholarship Council (Grant No. 201806305050). |
Corresponding Authors:
Jianwei Xu
E-mail: xxujianwei@nwafu.edu.cn
|
Cite this article:
Jianwei Xu(胥建卫) Coherence measures based on sandwiched Rényi relative entropy 2020 Chin. Phys. B 29 010301
|
[1] |
Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
|
[2] |
Streltsov A, Adesso G and Plenio M B 2017 Rev. Mod. Phys. 89 041003
|
[3] |
Hu M L, Hu X, Wang J, Peng Y, Zhang Y and Fan H 2018 Phys. Rep. 762-764 1
|
[4] |
Li B M, Hu M L and Fan H 2019 Acta Phys. Sin. 68 030304 (in Chinese)
|
[5] |
Yu X D, Zhang D J, Xu G F and Tong D M 2016 Phys. Rev. A 94 060302
|
[6] |
Aberg J 2006 arXiv:0612146[quant-ph]
|
[7] |
Chitambar E and Gour G 2016 Phys. Rev. Lett. 117 030401
|
[8] |
Chitambar E and Gour G 2016 Phys. Rev. A 94 052336
|
[9] |
Marvian I and Spekkens R W 2016 Phys. Rev. A 94 052324
|
[10] |
de Vicente J I and Streltsov A 2017 J. Phys. A: Math. Theor. 50 045301
|
[11] |
Liu Z W, Hu X and Lloyd S 2017 Phys. Rev. Lett. 118 060502
|
[12] |
Winter A and Yang D 2016 Phys. Rev. Lett. 116 120404
|
[13] |
Yadin B, Ma J, Girolami D, Gu M and Vedral V 2016 Phys. Rev. X 6 041028
|
[14] |
Shao L H, Li Y M, Luo Y and Xi Z J 2017 Commun. Theor. Phys. 67 631
|
[15] |
Zhu H, Hayashi M and Chen L 2017 J. Phys. A: Math. Theor. 50 475303
|
[16] |
Bu K, Singh U, Fei S M, Pati A K and Wu J 2017 Phys. Rev. Lett. 119 150405
|
[17] |
Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403
|
[18] |
Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N and Adesso G 2016 Phys. Rev. Lett. 116 150502
|
[19] |
Piani M, Cianciaruso M, Bromley T R, Napoli C, Johnston N and Adesso G 2016 Phys. Rev. A 93 042107
|
[20] |
Yu C S 2017 Phys. Rev. A 95 042337
|
[21] |
Rastegin A E 2016 Phys. Rev. A 93 032136
|
[22] |
Zhao H and Yu C S 2018 Sci. Rep. 8 299
|
[23] |
Kollas N K 2018 Phys. Rev. A 97 062344
|
[24] |
Xiong C, Kumar A and Wu J 2018 Phys. Rev. A 98 032324
|
[25] |
Bu K, Anand N and Singh U 2018 Phys. Rev. A 97 032342
|
[26] |
Yuan X, Zhou H, Cao Z and Ma X 2015 Phys. Rev. A 92 022124
|
[27] |
Qi X, Gao T and Yan F 2017 J. Phys. A: Math. Theor. 50 285301
|
[28] |
Du S, Bai Z and Guo Y 2015 Phys. Rev. A 91 052120
|
[29] |
Du S, Bai Z and Guo Y 2017 Phys. Rev. A 95 029901(E)
|
[30] |
Zhu H, Ma Z, Cao Z, Fei S M and Vlatko Vedral 2017 Phys. Rev. A 96 032316
|
[31] |
Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett. 114 210401
|
[32] |
Yu X D, Zhang D J, Liu C L and Tong D M 2016 Phys. Rev. A 93 060303
|
[33] |
Hu M L and Fan H 2016 Sci. Rep. 6 29260
|
[34] |
Yang L W, Han W and Xia Y J 2018 Chin. Phys. B 27 040302
|
[35] |
Zhang D J, Liu C L, Yu X D and Tong D M 2018 Phys. Rev. Lett. 120 170501
|
[36] |
Wilde M M, Winter A and Yang D 2014 Commun. Math. Phys. 331 593
|
[37] |
Müller-Lennert M, Dupuis F, Szehr O, Fehr S and Tomamichel M 2013 J. Math. Phys. 54 122203
|
[38] |
Beigi S 2013 J. Math. Phys. 54 122202
|
[39] |
Frank R L and Lieb E H 2013 J. Math. Phys. 54 122201
|
[40] |
Wang X D, Rong H W and Li W R 2003 Functional equations and their applications (Shanghai: Shanghai Science and Technology Academic Press) (in Chinese)
|
[41] |
Xu J 2016 Phys. Rev. A 93 032111
|
[42] |
Buono D, Nocerino G, Petrillo G, Torre G, Zonzo G and Illuminati F 2016 arXiv:1609.00913[quant-ph]
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|