Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 080401    DOI: 10.1088/1674-1056/ad5320
GENERAL Prev   Next  

Detecting short-term gravitational waves from post-merger hyper-massive neutron stars with a kilohertz detector

Yikang Chen(陈奕康)1,2 and Zong-Hong Zhu(朱宗宏)1,2,†
1 Institute for Frontier in Astronomy and Astrophysics, Beijing Normal University, Beijing 102206, China;
2 Department of Astronomy, Beijing Normal University, Beijing 100875, China
Abstract  Gravitational waves emanating from binary neutron star inspirals, alongside electromagnetic transients resulting from the aftermath of the GW170817 merger, have been successfully detected. However, the intricate post-merger dynamics that bridge these two sets of observables remain enigmatic. This includes if, and when, the post-merger remnant star collapses to a black hole, and what are the necessary conditions to power a short gamma-ray burst, and other observed electromagnetic counterparts. Our focus is on the detection of gravitational wave (GW) emissions from hyper-massive neutron stars (NSs) formed through binary neutron star (BNS) mergers. Utilizing several kilohertz GW detectors, we simulate BNS mergers within the detection limits of LIGO-Virgo-KARGA O4. Our objective is to ascertain the fraction of simulated sources that may emit detectable post-merger GW signals. For kilohertz detectors equipped with a new cavity design, we estimate that approximately 1.1%-32% of sources would emit a detectable post-merger GW signal. This fraction is contingent on the mass converted into gravitational wave energy, ranging from $0.01M_{\rm sun}$ to $0.1M_{\rm sun}$. Furthermore, by evaluating other well-regarded proposed kilohertz GW detectors, we anticipate that the fraction can increase to as much as 2.1%-61% under optimal performance conditions.
Keywords:  neutron star mergers      gravitational waves  
Received:  14 March 2024      Revised:  12 May 2024      Accepted manuscript online:  03 June 2024
PACS:  04.30.-w (Gravitational waves)  
  04.80.Nn (Gravitational wave detectors and experiments)  
  97.60.Jd (Neutron stars)  
Fund: This project was supported by the National Natural Science Foundation of China (Grant Nos. 12021003, 11920101003, and 11633001), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB23000000).
Corresponding Authors:  Zong-Hong Zhu     E-mail:  zhuzh@bnu.edu.cn

Cite this article: 

Yikang Chen(陈奕康) and Zong-Hong Zhu(朱宗宏) Detecting short-term gravitational waves from post-merger hyper-massive neutron stars with a kilohertz detector 2024 Chin. Phys. B 33 080401

[1] Abbott B P et al. (LIGO Scientific Collaboration and Virgo Collaboration) 2017 Phys. Rev. Lett. 119 161101
[2] Yan R D and Lau Y K 2023 Chin. Phys. Lett. 40 100401
[3] Tao Y Z, Jin H B and Wu Y L 2023 Chin. Phys. B 32 024212
[4] Wu J, Li J and Jiang Q Q 2023 Chin. Phys. B 32 090401
[5] Abbott B P, Abbott R, Abbott T D, et al. 2017 Astrophys. J. Lett. 848 L13
[6] Abbott B P, Abbott R, Abbott T D, et al. 2017 Astrophys. J. Lett. 848 L12
[7] Rosswog S, Davies M B, Thielemann F K and Piran T 2000 Astron. Astrophys. 360 171
[8] Rezzolla L, Baiotti L, Giacomazzo B, Link D and Font J A 2010 Class. Quantum Grav. 27 114105
[9] Rezzolla L, Giacomazzo B, Baiotti L, Granot J, Kouveliotou C and Aloy M A 2011 Astrophys. J. Lett. 732 L6
[10] Howell E, Regimbau T, Corsi A, Coward D and Burman R 2011 Mon. Not. R. Astron. Soc. 410 2123
[11] Lasky P D, Haskell B, Ravi V, Howell E J and Coward D M 2014 Phys. Rev. D 89 047302
[12] Rosswog S, Korobkin O, Arcones A, Thielemann F K and Piran T 2014 Mon. Not. R. Astron. Soc. 439 744
[13] Ravi V and Lasky P D 2014 Mon. Not. R. Astron. Soc. 441 2433
[14] Gao H, Zhang B and Lü H J 2016 Phys. Rev. D 93 044065
[15] Radice D, Perego A, Bernuzzi S and Zhang B 2018 Mon. Not. R. Astron. Soc. 481 3670
[16] Ai S, Gao H and Zhang B 2020 Astrophys. J. 893 146
[17] Xing Z Z 1994 Phys. Rev. D 50 R2957
[18] Ruffert M, Janka H T and Schaefer G 1996 Astron. Astrophys. 311 532
[19] Shibata M and Uryū K ō 2000 Phys. Rev. D 61 064001
[20] Hotokezaka K, Kiuchi K, Kyutoku K, Muranushi T, Sekiguchi Y i, Shibata M and Taniguchi K 2013 Phys. Rev. D 88 044026
[21] Maione F, De Pietri R, Feo A and Löffer F 2017 Phys. Rev. D 96 063011
[22] Baiotti L, Giacomazzo B and Rezzolla L 2008 Phys. Rev. D 78 084033
[23] Kiuchi K, Sekiguchi Y, Shibata M and Taniguchi K 2009 Phys. Rev. D 80 064037
[24] Kiuchi K, Kyutoku K, Sekiguchi Y and Shibata M 2018 Phys. Rev. D 97 124039
[25] Zhang C M, Wang J, Zhao Y H, et al. 2010 Astron. Astrophys. 2011 527
[26] Miao H, Yang H and Martynov D 2018 Phys. Rev. D 98 044044
[27] Ganapathy D, McCuller L, Rollins J G, Hall E D, Barsotti L and Evans M 2021 Phys. Rev. D 103 022002
[28] Wanderman D and Piran T 2015 Mon. Not. R. Astron. Soc. 448 3026
[29] Sun H, Zhang B and Li Z 2015 Astrophys. J. 812 33
[30] Yüksel H, Kistler M D, Beacom J F and Hopkins A M 2008 Astrophys. J. 683 L5
[31] Ade P A R, Aghanim N, Arnaud M, et al. 2016 Astron. Astrophys. 594 A13
[32] Abbott B P, Abbott R, Abbott T D, et al. 2020 Living Rev. Relativ. 23 3
[1] Application of Newtonian approximate model to LIGO gravitational wave data processing
Jie Wu(吴洁), Jin Li(李瑾), and Qing-Quan Jiang(蒋青权). Chin. Phys. B, 2023, 32(9): 090401.
[2] Simulation of the gravitational wave frequency distribution of neutron star-black hole mergers
Jianwei Zhang(张见微), Chengmin Zhang(张承民), Di Li(李菂), Xianghan Cui(崔翔翰), Wuming Yang(杨伍明), Dehua Wang(王德华), Yiyan Yang(杨佚沿), Shaolan Bi(毕少兰), and Xianfei Zhang(张先飞). Chin. Phys. B, 2021, 30(12): 120401.
[3] High-frequency gravitational waves having large spectral densities and their electromagnetic response
Li Fang-Yu (李芳昱), Wen Hao (文毫), Fang Zhen-Yun (方祯云). Chin. Phys. B, 2013, 22(12): 120402.
[4] Impact of neutron star crust on gravitational waves from the axial  w-modes
Wen De-Hua(文德华), Fu Hong-Yang(付宏洋), and Chen Wei(陈伟). Chin. Phys. B, 2011, 20(6): 060402.
[5] Noise in a coupling electromagnetic detecting system for high frequency gravitational waves
Li Jin(李瑾), Li Fang-Yu(李芳昱), and Zhong Yuan-Hong(仲元红). Chin. Phys. B, 2009, 18(3): 922-926.
[6] Improved calculation of relic gravitational waves
Zhao Wen(赵文). Chin. Phys. B, 2007, 16(10): 2894-2902.
[1] Tuo Li(李拓), Ke Cheng(程可), Zheng Peng(彭政), Hui Yang(杨晖), and Meiying Hou(厚美瑛). Intruder trajectory tracking in a three-dimensional vibration-driven granular system: Unveiling the mechanism of the Brazil nut effect[J]. Chin. Phys. B, 2023, 32(10): 104501 .
[2] Zhengwen Wang(王政文), Yingzhuo Han(韩英卓), Kenji Watanabe, Takashi Taniguchi, Yuhang Jiang(姜宇航), and Jinhai Mao(毛金海). Field induced Chern insulating states in twisted monolayer-bilayer graphene[J]. Chin. Phys. B, 2024, 33(6): 67301 -067301 .
[3] Fuyu Tian(田伏钰), Muhammad Faizan, Xin He(贺欣), Yuanhui Sun(孙远慧), and Lijun Zhang(张立军). Moiré superlattices arising from growth induced by screw dislocations in layered materials[J]. Chin. Phys. B, 2024, 33(7): 77403 -077403 .
[4] Wen-Chuang Shang(商文创), Yi-Ning Han(韩熠宁), Shimpei Endo, and Chao Gao(高超). Topological phases and edge modes of an uneven ladder[J]. Chin. Phys. B, 2024, 33(8): 80202 -080202 .
[5] Ao Wang(汪澳), Yu-Zhen Wei(魏玉震), Min Jiang(姜敏), Yong-Cheng Li(李泳成), Hong Chen(陈虹), and Xu Huang(黄旭). Effects of quantum noise on teleportation of arbitrary two-qubit state via five-particle Brown state[J]. Chin. Phys. B, 2024, 33(8): 80307 -080307 .
[6] Pu Wang(王璞), Zhong-Yan Li(李忠艳), and Hui-Xian Meng(孟会贤). Quantum block coherence with respect to projective measurements[J]. Chin. Phys. B, 2024, 33(8): 80308 -080308 .
[7] Jia-Yi Zhu(朱佳仪), Zhi-Min He(何志民), Cheng Huang(黄成), Jun Zeng(曾峻), Hui-Chuan Lin(林惠川), Fu-Chang Chen(陈福昌), Chao-Qun Yu(余超群), Yan Li(李燕), Yong-Tao Zhang(张永涛), Huan-Ting Chen(陈焕庭), and Ji-Xiong Pu(蒲继雄). Deep learning-assisted common temperature measurement based on visible light imaging[J]. Chin. Phys. B, 2024, 33(8): 80701 -080701 .
[8] C. S. Gomes, F. E. Jorge, and A. Canal Neto. All-electron basis sets for H to Xe specific for ZORA calculations: Applications in atoms and molecules[J]. Chin. Phys. B, 2024, 33(8): 83101 -083101 .
[9] Jialing Yang(杨嘉玲), Aoqian Shi(史奥芊), Yuchen Peng(彭宇宸), Peng Peng(彭鹏), and Jianjun Liu(刘建军). Interface state-based bound states in continuum and below-continuum-resonance modes with high-Q factors in the rotational periodic system[J]. Chin. Phys. B, 2024, 33(8): 84206 -084206 .
[10] Qianghua Rao(饶强华), Hui Chen(陈辉), Sanqiu Liu(刘三秋), and Xiaochang Chen(陈小昌). Ion acoustic solitary waves in an adiabatic dusty plasma: Roles of superthermal electrons, ion loss and ionization[J]. Chin. Phys. B, 2024, 33(8): 85201 -085201 .