Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 080701    DOI: 10.1088/1674-1056/ad4cd9
GENERAL Prev   Next  

Deep learning-assisted common temperature measurement based on visible light imaging

Jia-Yi Zhu(朱佳仪)1, Zhi-Min He(何志民)1, Cheng Huang(黄成)1, Jun Zeng(曾峻)1, Hui-Chuan Lin(林惠川)1,†, Fu-Chang Chen(陈福昌)1, Chao-Qun Yu(余超群)1, Yan Li(李燕)1, Yong-Tao Zhang(张永涛)1, Huan-Ting Chen(陈焕庭)1, and Ji-Xiong Pu(蒲继雄)1,2
1 College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China;
2 Fujian Provincial Key Laboratory of Light Propagation and Transformation, College of Information Science & Engineering, Huaqiao University, Xiamen 361021, China
Abstract  Real-time, contact-free temperature monitoring of low to medium range (30 °C-150 °C) has been extensively used in industry and agriculture, which is usually realized by costly infrared temperature detection methods. This paper proposes an alternative approach of extracting temperature information in real time from the visible light images of the monitoring target using a convolutional neural network (CNN). A mean-square error of <1.119 °C was reached in the temperature measurements of low to medium range using the CNN and the visible light images. Imaging angle and imaging distance do not affect the temperature detection using visible optical images by the CNN. Moreover, the CNN has a certain illuminance generalization ability capable of detection temperature information from the images which were collected under different illuminance and were not used for training. Compared to the conventional machine learning algorithms mentioned in the recent literatures, this real-time, contact-free temperature measurement approach that does not require any further image processing operations facilitates temperature monitoring applications in the industrial and civil fields.
Keywords:  convolutional neural network      visible light image      temperature measurement      low-to-medium-range temperatures  
Received:  02 April 2024      Revised:  26 April 2024      Accepted manuscript online:  17 May 2024
PACS:  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975072 and 12174173) and the Natural Science Foundation of Fujian Province, China (Grant Nos. 2022H0023, 2022J02047, ZZ2023J20, and 2022G02006).
Corresponding Authors:  Hui-Chuan Lin     E-mail:  lhc1810@mnnu.edu.cn

Cite this article: 

Jia-Yi Zhu(朱佳仪), Zhi-Min He(何志民), Cheng Huang(黄成), Jun Zeng(曾峻), Hui-Chuan Lin(林惠川), Fu-Chang Chen(陈福昌), Chao-Qun Yu(余超群), Yan Li(李燕), Yong-Tao Zhang(张永涛), Huan-Ting Chen(陈焕庭), and Ji-Xiong Pu(蒲继雄) Deep learning-assisted common temperature measurement based on visible light imaging 2024 Chin. Phys. B 33 080701

[1] Li B J 2007 Study on the relationship between land use and ecological environment, Ph.D Dissertation (Nanjing: Nanjing Agricultural University) (in Chinese)
[2] Guo F 2016 Chemical Engineering Management 29 269 (in Chinese)
[3] Zhang H R 2022 Fault diagnosis and health assessment of power transformers based on data information mining, M.S. Thesis (Jinan: Shandong University) (in Chinese)
[4] Li T F 2020 High Voltage Apparatus 56 246 (in Chinese)
[5] Zhao H 2015 Science and Technology Wind 262 118 (in Chinese)
[6] Li W M 2021 Research on the mechanism and method optimization of artificial intelligence temperature measurement based on visible light images, M.S. Thesis (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[7] Houchens A F and Hering R G 1967 Houchens A F and Hering R G 1967 Proceedings of 2nd Thermophysics Specialist Conference, April 17-20, 1967, New Orleans, LA, USA, pp. 65-89
[8] Torrance K E and Sparrow E M 1967 J. Opt. Soc. Am. 57 1105
[9] Zha Z W, Zhu J Y, Yang X F, Huang X, Guo H X, Xie A, Lu X J and Fu Z W 2022 Proceedings of 23rd International Conference on Electronic Packaging Technology, August 10-13, 2022, Dalian, China, pp. 1-5
[10] He Y, Wang D Z, Yin Q Y, Gao Y Y and Zheng L B 2022 Proceedings of 23rd International Conference on Electronic Packaging Technology, August 10-13, 2022, Dalian, China, pp. 1-6
[11] Farbaniec L and Eakins D E 2023 Rev. Sci. Instrum. 94 034902
[12] Alajlouni S, Maize K and Shakouri A 2022 Proceedings of 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, May 31-June 03, 2022, San Diego, CA, USA, pp. 1-10
[13] Wang M 2020 Research on temperature measurement method based on visible image and machine learning, M.S. Thesis (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[14] Du W J, Ye Q Z, Yuan Z and Li C M 2022 High Voltage Electronics 58 221 (in Chinese)
[15] Nie X F, Ye Q Z, Yuan Z and Han M T 2021 Proceedings of the 16th Annual Conference of China Electrotechnical Society, September 24-26, 2021, Springer, Singapore, pp. 616-627
[16] Yang J F, Qiao P R, Li Y M and Wang N 2019 Statistics and Decision Making 35 36 (in Chinese)
[17] Yu K, Jia L, Chen Y Q and Xu W 2013 Proceedings of CCF Conference on Artificial Intelligence, July 31-August 2, 2013, Beijing,China, pp.65-89
[18] Zheng Y P, Li G Y and Li Y 2019 Computer Engineering and Applications 55 12 (in Chinese)
[19] Li J, Yang L Z, Ding W, Mao X Z, Fan J J, Wang J F, Shang H F and Ti G 2021 Appl. Opt. 60 4004
[20] Lai X L, Li Q Y, Wu X Y, Liu G D, Chen Z Y and Pu J X 2021 IEEE Access 9 68387
[21] Fan W R, Chen T R, Xu X Q, Chen Z Y, Hu H Z, Zhang D L, Wang D W, Pu J X and Zhu S Y 2022 Laser & Photonics Reviews 16 2100719
[1] Single event effects evaluation on convolution neural network in Xilinx 28 nm system on chip
Xu Zhao(赵旭), Xuecheng Du(杜雪成), Xu Xiong(熊旭), Chao Ma(马超), Weitao Yang(杨卫涛), Bo Zheng(郑波), and Chao Zhou(周超). Chin. Phys. B, 2024, 33(7): 078501.
[2] Analysis of learnability of a novel hybrid quantum—classical convolutional neural network in image classification
Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Shuang Wang(王爽), Rui Wang(王睿), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2024, 33(4): 040303.
[3] Thermometry utilizing stored short-wavelength spin waves in cold atomic ensembles
Xingchang Wang(王兴昌), Jianmin Wang(王建民), Ying Zuo(左瀛), Liang Dong(董亮), Georgios A Siviloglou, and Jiefei Chen(陈洁菲). Chin. Phys. B, 2023, 32(7): 074206.
[4] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[5] High-precision nuclear magnetic resonance probe suitable for in situ studies of high-temperature metallic melts
Ao Li(李傲), Wei Xu(许巍), Xiao Chen(陈霄), Bing-Nan Yao(姚冰楠), Jun-Tao Huo(霍军涛), Jun-Qiang Wang(王军强), and Run-Wei Li(李润伟). Chin. Phys. B, 2022, 31(4): 040706.
[6] Characterization of premixed swirling methane/air diffusion flame through filtered Rayleigh scattering
Meng Li(李猛), Bo Yan(闫博), Shuang Chen(陈爽), Li Chen(陈力), and Jin-He Mu(母金河). Chin. Phys. B, 2022, 31(3): 034702.
[7] Determination of quantum toric error correction code threshold using convolutional neural network decoders
Hao-Wen Wang(王浩文), Yun-Jia Xue(薛韵佳), Yu-Lin Ma(马玉林), Nan Hua(华南), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(1): 010303.
[8] Convolutional neural network for transient grating frequency-resolved optical gating trace retrieval and its algorithm optimization
Siyuan Xu(许思源), Xiaoxian Zhu(朱孝先), Ji Wang(王佶), Yuanfeng Li(李远锋), Yitan Gao(高亦谈), Kun Zhao(赵昆), Jiangfeng Zhu(朱江峰), Dacheng Zhang(张大成), Yunlin Chen(陈云琳), and Zhiyi Wei(魏志义). Chin. Phys. B, 2021, 30(4): 048402.
[9] Quantitative temperature imaging at elevated pressures and in a confined space with CH4/air laminar flames by filtered Rayleigh scattering
Bo Yan(闫博), Li Chen(陈力), Meng Li(李猛), Shuang Chen(陈爽), Cheng Gong(龚诚), Fu-Rong Yang(杨富荣), Yun-Gang Wu(吴运刚), Jiang-Ning Zhou(周江宁), Jin-He Mu(母金河). Chin. Phys. B, 2020, 29(2): 024701.
[10] Computational prediction of RNA tertiary structures using machine learning methods
Bin Huang(黄斌), Yuanyang Du(杜渊洋), Shuai Zhang(张帅), Wenfei Li(李文飞), Jun Wang (王骏), and Jian Zhang(张建)†. Chin. Phys. B, 2020, 29(10): 108704.
[11] Enhancing convolutional neural network scheme forrheumatoid arthritis grading with limited clinical data
Jian Tang(汤键), Zhibin Jin(金志斌), Xue Zhou(周雪), Weijing Zhang(张玮婧), Min Wu(吴敏), Qinghong Shen(沈庆宏), Qian Cheng(程茜), Xueding Wang(王学鼎), Jie Yuan(袁杰). Chin. Phys. B, 2019, 28(3): 038701.
[12] Highly sensitive optical fiber temperature sensor based on resonance in sidewall of liquid-filled silica capillary tube
Min Li(李敏), Biao Feng(冯彪), Jiwen Yin(尹辑文). Chin. Phys. B, 2019, 28(11): 114201.
[13] Shock temperature and reflectivity of precompressed H2O up to 350 GPa:Approaching the interior of planets
Zhi-Yu He(贺芝宇), Hua Shu(舒桦), Xiu-Guang Huang(黄秀光), Qi-Li Zhang(张其黎), Guo Jia(贾果), Fan Zhang(张帆), Yu-Chun Tu(涂昱淳), Jun-Yue Wang(王寯越), Jun-Jian Ye(叶君建), Zhi-Yong Xie(谢志勇), Zhi-Heng Fang(方智恒), Wen-Bing Pei(裴文兵), Si-Zu Fu(傅思祖). Chin. Phys. B, 2018, 27(12): 126202.
[14] Analysis of the blackbody-radiation shift in an ytterbium optical lattice clock
Yi-Lin Xu(徐艺琳), Xin-Ye Xu(徐信业). Chin. Phys. B, 2016, 25(10): 103202.
[15] Fast thermometry for trapped atoms using recoil-induced resonance
Zhao Yan-Ting (赵延霆), Su Dian-Qiang (苏殿强), Ji Zhong-Hua (姬中华), Zhang Hong-Shan (张洪山), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2015, 24(9): 093701.
[1] Tuo Li(李拓), Ke Cheng(程可), Zheng Peng(彭政), Hui Yang(杨晖), and Meiying Hou(厚美瑛). Intruder trajectory tracking in a three-dimensional vibration-driven granular system: Unveiling the mechanism of the Brazil nut effect[J]. Chin. Phys. B, 2023, 32(10): 104501 .
[2] Zhengwen Wang(王政文), Yingzhuo Han(韩英卓), Kenji Watanabe, Takashi Taniguchi, Yuhang Jiang(姜宇航), and Jinhai Mao(毛金海). Field induced Chern insulating states in twisted monolayer-bilayer graphene[J]. Chin. Phys. B, 2024, 33(6): 67301 -067301 .
[3] Jinyu Han(韩金宇), Wenshan Hong(洪文山), Shu Cai(蔡树), Jinyu Zhao(赵金瑜), Jing Guo(郭静), Yazhou Zhou(周亚洲), Pengyu Wang(王鹏玉), Lixin Cao(曹立新), Huiqian Luo(罗会仟), Shiliang Li(李世亮), Qi Wu(吴奇), and Liling Sun(孙力玲). Coevolution of superconductivity and Hall coefficient with anisotropic lattice shrinkage in compressed KCa2Fe4As4F2[J]. Chin. Phys. B, 2024, 33(7): 77402 -077402 .
[4] Fuyu Tian(田伏钰), Muhammad Faizan, Xin He(贺欣), Yuanhui Sun(孙远慧), and Lijun Zhang(张立军). Moiré superlattices arising from growth induced by screw dislocations in layered materials[J]. Chin. Phys. B, 2024, 33(7): 77403 -077403 .
[5] Junjie Jia(贾俊杰), Yadong Gu(谷亚东), Chaohui Yin(殷超辉), Yingjie Shu(束英杰), Yiwen Chen(陈逸雯), Jumin Shi(史聚民), Xing Zhang(张杏), Hao Chen(陈浩), Taimin Miao(苗泰民), Xiaolin Ren(任晓琳), Bo Liang(梁波), Wenpei Zhu(朱文培), Neng Cai(蔡能), Fengfeng Zhang(张丰丰), Shenjin Zhang(张申金), Feng Yang(杨峰), Zhimin Wang(王志敏), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Hanqing Mao(毛寒青), Guodong Liu(刘国东), Zhian Ren(任治安), Lin Zhao(赵林), and Xing-Jiang Zhou(周兴江). Absence of BCS-BEC crossover in FeSe0.45Te0.55 superconductor[J]. Chin. Phys. B, 2024, 33(7): 77404 -077404 .
[6] Zhiyao Hu(胡知遥), Qixian Li(李其贤), Xuanchen Zhang(张轩晨), He-Bin Zhang(张贺宾), Long-Gang Huang(黄龙刚), and Yong-Chun Liu(刘永椿). Nonlinear time-reversal interferometry with arbitrary quadratic collective-spin interaction[J]. Chin. Phys. B, 2024, 33(8): 80601 -080601 .
[7] Wen-Chuang Shang(商文创), Yi-Ning Han(韩熠宁), Shimpei Endo, and Chao Gao(高超). Topological phases and edge modes of an uneven ladder[J]. Chin. Phys. B, 2024, 33(8): 80202 -080202 .
[8] Ao Wang(汪澳), Yu-Zhen Wei(魏玉震), Min Jiang(姜敏), Yong-Cheng Li(李泳成), Hong Chen(陈虹), and Xu Huang(黄旭). Effects of quantum noise on teleportation of arbitrary two-qubit state via five-particle Brown state[J]. Chin. Phys. B, 2024, 33(8): 80307 -080307 .
[9] Pu Wang(王璞), Zhong-Yan Li(李忠艳), and Hui-Xian Meng(孟会贤). Quantum block coherence with respect to projective measurements[J]. Chin. Phys. B, 2024, 33(8): 80308 -080308 .
[10] Yikang Chen(陈奕康) and Zong-Hong Zhu(朱宗宏). Detecting short-term gravitational waves from post-merger hyper-massive neutron stars with a kilohertz detector[J]. Chin. Phys. B, 2024, 33(8): 80401 -080401 .