Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 077402    DOI: 10.1088/1674-1056/ad4d65
RAPID COMMUNICATION Prev   Next  

Coevolution of superconductivity and Hall coefficient with anisotropic lattice shrinkage in compressed KCa2Fe4As4F2

Jinyu Han(韩金宇)1,3, Wenshan Hong(洪文山)1, Shu Cai(蔡树)2, Jinyu Zhao(赵金瑜)1,3, Jing Guo(郭静)1, Yazhou Zhou(周亚洲)1, Pengyu Wang(王鹏玉)1,3, Lixin Cao(曹立新)1, Huiqian Luo(罗会仟)1,3, Shiliang Li(李世亮)1,3, Qi Wu(吴奇)1, and Liling Sun(孙力玲)1,2,3,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 Center for High Pressure Science & Technology Advanced Research, Beijing 100094, China;
3 University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  The stability of superconductivity in superconductors is widely recognized to be determined by various factors, including charge, spin, orbit, lattice, and other related degrees of freedom. Here, we report our findings on the pressure-induced coevolution of superconductivity and Hall coefficient in KCa$_{2}$Fe$_{4}$As$_{4}$F$_{2}$, an iron-based superconductor possessing a hybrid crystal structure combining KFe$_{2}$As$_{2}$ and CaFeAsF. Our investigation, involving high-pressure resistance, Hall effect and x-ray diffraction (XRD) measurements, allows us to observe the connection of the superconductivity and Hall coefficient with the anisotropic lattice shrinkage. We find that its ambient-pressure tetragonal (T) phase presents a collapse starting at around 18 GPa, where the sign of the Hall coefficient ($R_{\rm H}$) changes from positive to negative. Upon further compression, both superconducting transition temperature ($T_{\rm c}$) and $R_{\rm H}$ exhibit a monotonous decrease. At around 41 GPa, the superconductivity is completely suppressed ($T_{\rm c}=0$), where the parameter $a$ begins to decline again and the Hall coefficient remains nearly unchanged. Our experiment results clearly demonstrate that the pressure-induced anisotropic lattice collapse plays a crucial role in tuning the interplay among multiple degrees of freedom in the superconducting system and, correspondingly, the stability of the superconductivity.
Keywords:  effects of pressure      pnictides and chalcogenides      transport properties  
Received:  02 May 2024      Revised:  16 May 2024      Accepted manuscript online:  20 May 2024
PACS:  74.62.Fj (Effects of pressure)  
  74.70.Xa (Pnictides and chalcogenides)  
  74.25.F- (Transport properties)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1403900, 2021YFA1401800, 2018YFA0704201, and 2023YFA1406103), the National Natural Science Foundation of China (Grant Nos. U2032214, 12122414, 12104487, and 12004419), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB25000000).
Corresponding Authors:  Liling Sun     E-mail:  llsun@iphy.ac.cn,liling.sun@hpstar.ac.cn

Cite this article: 

Jinyu Han(韩金宇), Wenshan Hong(洪文山), Shu Cai(蔡树), Jinyu Zhao(赵金瑜), Jing Guo(郭静), Yazhou Zhou(周亚洲), Pengyu Wang(王鹏玉), Lixin Cao(曹立新), Huiqian Luo(罗会仟), Shiliang Li(李世亮), Qi Wu(吴奇), and Liling Sun(孙力玲) Coevolution of superconductivity and Hall coefficient with anisotropic lattice shrinkage in compressed KCa2Fe4As4F2 2024 Chin. Phys. B 33 077402

[1] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296
[2] Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F and Zhao Z X 2008 Chin. Phys. Lett. 25 2215
[3] Zhu X, Han F, Mu G, Cheng P, Shen B, Zeng B and Wen H H 2009 Phys. Rev. B 79 220512
[4] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262
[5] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
[6] Iyo A, Kawashima K, Kinjo T, Nishio T, Ishida S, Fujihisa H, Gotoh Y, Kihou K, Eisaki H and Yoshida Y 2016 J. Am. Chem. Soc. 138 3410
[7] Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Ablimit A, Feng C M and Cao G H 2016 J. Am. Chem. Soc. 138 7856
[8] Ni N, Allred J M, Chan B C and Cava R J 2011 Proc. Natl. Acad. Sci. USA 108 E1019
[9] Sun Y L, Jiang H, Zhai H F, Bao J K, Jiao W H, Tao Q, Shen C Y, Zeng Y W, Xu Z A and Cao G H 2012 J. Am. Chem. Soc. 134 12893
[10] Wang T, Chu J, Jin H, Feng J, Wang L, Song Y, Zhang C, Xu X, Li W, Li Z, Hu T, Jiang D, Peng W, Liu X and Mu G 2019 J. Phys. Chem. C 123 13925
[11] Yang R, Le C, Zhang L, Xu B, Zhang W, Nadeem K, Xiao H, Hu J and Qiu X 2015 Phys. Rev. B 91 224507
[12] Yang R, Dai Y, Xu B, Zhang W, Qiu Z, Sui Q, Homes C C and Qiu X 2017 Phys. Rev. B 95 064506
[13] Struzhkin V V, Hemley R J, Mao H k and Timofeev Y A 1997 Nature 390 382
[14] Shimizu K, Kimura T, Furomoto S, Takeda K, Kontani K, Onuki Y and Amaya K 2001 Nature 412 316
[15] Mao W L, Mao H k, Eng P J, Trainor T P, Newville M, Kao C c, Heinz D L, Shu J, Meng Y and Hemley R J 2003 Science 302 425
[16] Sun L, Chen X J, Guo J, Gao P, Huang Q Z, Wang H, Fang M, Chen X, Chen G, Wu Q, Zhang C, Gu D, Dong X, Wang L, Yang K, Li A, Dai X, Mao H K and Zhao Z 2012 Nature 483 67
[17] Chen X J, Struzhkin V V, Yu Y, Goncharov A F, Lin C T, Mao H K and Hemley R J 2010 Nature 466 950
[18] Deng L, Zheng Y, Wu Z, Huyan S, Wu H C, Nie Y, Cho K and Chu C W 2019 Proc. Natl. Acad. Sci. USA 116 2004
[19] Guo J, Zhou Y, Huang C, Cai S, Sheng Y, Gu G, Yang C, Lin G, Yang K, Li A, Wu Q, Xiang T and Sun L 2019 Nat. Phys. 16 295
[20] Zhou Y, Guo J, Cai S, Zhao J, Gu G, Lin C, Yan H, Huang C, Yang C, Long S, Gong Y, Li Y, Li X, Wu Q, Hu J, Zhou X, Xiang T and Sun L 2022 Nat. Phys. 18 406
[21] Cai S, Zhao J, Ni N, Guo J, Yang R, Wang P, Han J, Long S, Zhou Y, Wu Q, Qiu X, Xiang T, Cava R J and Sun L 2023 Nat. Commun. 14 3116
[22] Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H and Mao H K 1994 Phys. Rev. B 50 4260
[23] Huang Y E, Wu F, Wang A, Chen Y, Jiao L, Smidman M and Yuan H Q 2022 Chin. Phys. Lett. 39 097101
[24] Jinyu Z, Shu C, Yiwen C, Genda G, Hongtao Y, Jing G, Jinyu H, Pengyu W, Yazhou Z, Yanchun L, Xiaodong L, Zhian R, Qi W, Xingjiang Z, Yang D, Tao X, Ho kwang M and Liling S 2024 Chin. Phys. Lett. 41 047401
[25] Wang P, Liu C, Yang R, Cai S, Xie T, Guo J, Zhao J, Han J, Long S, Zhou Y, Li Y, Li X, Luo H, Li S, Wu Q, Qiu X, Xiang T and Sun L 2023 Phys. Rev. B 108 054415
[26] Xiang L, Meier W R, Xu M, Kaluarachchi U S, Bud’ko S L and Canfield P C 2018 Phys. Rev. B 97 174517
[27] Borisov V, Canfield P C and Valentí R 2018 Phys. Rev. B 98 064104
[28] Xiang L, Xu M, Bud’ko S L and Canfield P C 2022 Phys. Rev. B 106 134505
[29] Wu D, Hong W, Dong C, Wu X, Sui Q, Huang J, Gao Q, Li C, Song C, Luo H, Yin C, Xu Y, Luo X, Cai Y, Jia J, Wang Q, Huang Y, Liu G, Zhang S, Zhang F, Yang F, Wang Z, Peng Q, Xu Z, Qiu X, Li S, Luo H, Hu J, Zhao L and Zhou X J 2020 Phys. Rev. B 101 224508
[30] Ishida J, Iimura S and Hosono H 2017 Phys. Rev. B 96 174522
[31] Wang Z, He C, Tang Z, Wu S and Cao G 2016 Science China Materials 60 83
[32] Duan W, Chen K, Hong W, Chen X, Yang H, Li S, Luo H and Wen H H 2021 Phys. Rev. B 103 214518
[33] Hao J, Hong W, Zhou X, Xiang Y, Dai Y, Yang H, Li S, Luo H and Wen H H. 2022 Phys. Rev. B 106 014523
[34] Li Y, Zhu Z, Ye Y, Hong W, Li Y, Li S, Luo H and Wen H H. 2024 Phys. Rev. B 109 014506
[35] Wang G, Wang Z and Shi X 2016 Europhys. Lett. 116 37003
[36] Kirschner F K K, Adroja D T, Wang Z C, Lang F, Smidman M, Baker P J, Cao G H and Blundell S J 2018 Phys. Rev. B 97 060506
[37] Zhang C, Wu Q Y, Hong W S, Liu H, Zhu S X, Song J J, Zhao Y Z, Wu F Y, Liu Z T, Liu S Y, Yuan Y H, Huang H, He J, Li S, Liu H Y, Duan Y X, Luo H Q and Meng J Q 2022 Sci. China Phys. Mech. Astron. 65 237411
[38] Wang B, Wang Z C, Ishigaki K, Matsubayashi K, Eto T, Sun J, Cheng J G, Cao G H and Uwatoko Y 2019 Phys. Rev. B 99 014501
[39] Hong W, Song L, Liu B, Li Z, Zeng Z, Li Y, Wu D, Sui Q, Xie T, Danilkin S, Ghosh H, Ghosh A, Hu J, Zhao L, Zhou X, Qiu X, Li S and Luo H 2020 Phys. Rev. Lett. 125 117002
[40] Pauw V D 1958 Philips Research Reports 13 1
[41] Mao H K, Xu J and Bell P M 1986 Journal of Geophysical Research: Solid Earth 91 4673
[42] Kaluarachchi U S, Taufour V, Sapkota A, Borisov V, Kong T, Meier W R, Kothapalli K, Ueland B G, Kreyssig A, Valentí R, McQueeney R J, Goldman A I, Bud’ko S L and Canfield P C 2017 Phys. Rev. B 96 140501
[43] Stillwell R L, Wang X, Wang L, Campbell D J, Paglione J, Weir S T, Vohra Y K and Jeffries J R 2019 Phys. Rev. B 100 045152
[44] Bud’ko S L, Kogan V G, Prozorov R, Meier W R, Xu M and Canfield P C 2018 Phys. Rev. B 98 144520
[1] Electronic transport evolution across the successive structural transitions in Ni50-xFexTi50 shape memory alloys
Ping He(何萍), Jinying Yang(杨金颖), Qiusa Ren(任秋飒), Binbin Wang(王彬彬), Guangheng Wu(吴光恒), and Enke Liu(刘恩克). Chin. Phys. B, 2024, 33(7): 077201.
[2] Magnetic and electrical transport properties in GdAlSi and SmAlGe
Jing Gong(巩静), Huan Wang(王欢), Xiao-Ping Ma(马小平), Xiang-Yu Zeng(曾祥雨), Jun-Fa Lin(林浚发), Kun Han(韩坤), Yi-Ting Wang(王乙婷), and Tian-Long Xia(夏天龙). Chin. Phys. B, 2024, 33(7): 077302.
[3] Structural and mass transport properties of liquid ytterbium in the temperature range 1123 K-1473 K
D D Satikunvar, N K Bhatt, and B Y Thakore. Chin. Phys. B, 2023, 32(6): 067101.
[4] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[5] Device design based on the covalent homocouplingof porphine molecules
Minghui Qu(曲明慧), Jiayi He(贺家怡), Kexin Liu(刘可心), Liemao Cao(曹烈茂), Yipeng Zhao(赵宜鹏), Jing Zeng(曾晶), and Guanghui Zhou(周光辉). Chin. Phys. B, 2021, 30(9): 098504.
[6] Epitaxial growth and transport properties of compressively-strained Ba2IrO4 films
Yun-Qi Zhao(赵蕴琦), Heng Zhang(张衡), Xiang-Bin Cai(蔡祥滨), Wei Guo(郭维), Dian-Xiang Ji(季殿祥), Ting-Ting Zhang(张婷婷), Zheng-Bin Gu(顾正彬), Jian Zhou(周健), Ye Zhu(朱叶), and Yue-Feng Nie(聂越峰). Chin. Phys. B, 2021, 30(8): 087401.
[7] Transport properties of Tl2Ba2CaCu2O8 microbridges on a low-angle step substrate
Sheng-Hui Zhao(赵生辉), Wang-Hao Tian(田王昊), Xue-Lian Liang(梁雪连), Ze He(何泽), Pei Wang(王培), Lu Ji(季鲁), Ming He(何明), and Hua-Bing Wang(王华兵). Chin. Phys. B, 2021, 30(6): 060308.
[8] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[9] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[10] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[11] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[12] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[13] Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles
Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2020, 29(3): 037304.
[14] Pressure-dependent physical properties of cubic Sr BO3 ( B=Cr, Fe) perovskites investigated by density functional theory
Md Zahid Hasan, Md Rasheduzzaman, and Khandaker Monower Hossain. Chin. Phys. B, 2020, 29(12): 123101.
[15] Growth and transport properties of topological insulator Bi2Se3 thin film on a ferromagnetic insulating substrate
Shanna Zhu(朱珊娜), Gang Shi(史刚), Peng Zhao(赵鹏), Dechao Meng(孟德超), Genhao Liang(梁根豪), Xiaofang Zhai(翟晓芳), Yalin Lu(陆亚林), Yongqing Li(李永庆), Lan Chen(陈岚), Kehui Wu(吴克辉). Chin. Phys. B, 2018, 27(7): 076801.
[1] ZHOU HAI-JUN (周海军), XU XIANG-YUAN (许祥源), HUANG WEN (黄雯), LI LIANG-QUAN (李良权), CHEN DIE-YAN (陈瓞延). STUDY OF HIGH-LYING EXCITED STATES OF RARE-EARTH ELEMENT Dy BY LASER RESONANCE IONIZATION SPECTROSCOPY[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 19 -26 .
[2] ZHAN LI (詹黎), TU JIN-HONG (屠锦洪), GUO JIA-RONG (郭嘉荣). ANALYSIS OF THE GENERAL EFFECTS IN DOUBLE-GRATING DIFFRACTION-INTERFERENCE SYSTEM[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 27 -44 .
[3] DING E-JIANG(丁鄂江), Lü YAN-NAN(吕燕南). THE INHOMOGENEOUS PERIODIC STATES IN A COUPLED MAP LATTICE[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 3 -10 .
[4] FAN WEI-JUN (范卫军), XIA JIAN-BAI (顾宗权), GU ZONG-QUAN (夏建白), LI GUO-HUA (李国华). FIRST-PRINCIPLE SELF-CONSISTENT PSEUDOPOTENTIAL CALCULATION OF THE ELECTRONIC STRUCTURES OF SHORT-PERIOD (GaAs)m(AlAs)n SUPERLATT1CES[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 45 -50 .
[5] YE HONG-JUAN (叶红娟), HU CAN-MING (胡灿明), HUANG YE-XIAO (黄叶肖), LU XIAO-FENG (陆晓峰), WANG ZHI-TAO (王志涛), ZENG WEN-SHENG (曾文生), ZHANG GUANG-YIN (张光寅), YAN SHAO-LIN (阎少林). FAR-INFRARED AND INFRARED REFLECTIONS OF Tl2Ba2Ca2Cu3O10 FILM[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 51 -56 .
[6] SHEN BAO-GEN (沈保根), YANG LIN-YUAN (杨林原), GUO HUI-QUN (郭慧群). MAGNETIC PROPERTIES AND CRYSTALLIZATION OF THE RAPIDLY QUENCHED (Fe1-xNdx) 81.5B18.5 ALLOYS[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 57 -62 .
[7] LIN WEI-ZHU (林位株), PENG WEN-JI (彭文基), QIU ZHI-REN (丘志仁), ZHOU XUE-CONG (周学聪), MO DANG (莫党). DYNAMICS OF CARRIER CAPTURE IN AlGaAs/GaAs MULTIPLE QUANTUM WELLS[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(1): 63 -68 .
[8] LIANG ZHONG-CHENG (梁忠诚). INTERFACE STRESS, TENSION AND FREE ENERGY DENSITY OF CONDENSED MATTER[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(2): 104 -112 .
[9] DENG WEN-JI (邓文基), LIU YOU-YAN (刘有延), HUANG XIU-QING (黄秀清). ON THE LOCALIZATION OF ELECTRONIC STATES IN ONE-DIMENSIONAL QUASILATTICES[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(2): 113 -122 .
[10] JIN YING (金鹰), ZHANG SHU-LIN (张树霖), QIN GUO-GANG (秦国刚), FAN YONG-LIANG (樊永良), ZHOU GOU-LIANG (周国良), YU MING-REN (俞鸣人). RAMAN SCATTERING INTENSITIES OF FOLDED LONGITUDINAL ACOUSTIC PHONONS IN GexSi1-x/Si SUPERLATTICES[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(2): 130 -137 .