|
|
Coevolution of superconductivity and Hall coefficient with anisotropic lattice shrinkage in compressed KCa2Fe4As4F2 |
Jinyu Han(韩金宇)1,3, Wenshan Hong(洪文山)1, Shu Cai(蔡树)2, Jinyu Zhao(赵金瑜)1,3, Jing Guo(郭静)1, Yazhou Zhou(周亚洲)1, Pengyu Wang(王鹏玉)1,3, Lixin Cao(曹立新)1, Huiqian Luo(罗会仟)1,3, Shiliang Li(李世亮)1,3, Qi Wu(吴奇)1, and Liling Sun(孙力玲)1,2,3,† |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 Center for High Pressure Science & Technology Advanced Research, Beijing 100094, China; 3 University of Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract The stability of superconductivity in superconductors is widely recognized to be determined by various factors, including charge, spin, orbit, lattice, and other related degrees of freedom. Here, we report our findings on the pressure-induced coevolution of superconductivity and Hall coefficient in KCa$_{2}$Fe$_{4}$As$_{4}$F$_{2}$, an iron-based superconductor possessing a hybrid crystal structure combining KFe$_{2}$As$_{2}$ and CaFeAsF. Our investigation, involving high-pressure resistance, Hall effect and x-ray diffraction (XRD) measurements, allows us to observe the connection of the superconductivity and Hall coefficient with the anisotropic lattice shrinkage. We find that its ambient-pressure tetragonal (T) phase presents a collapse starting at around 18 GPa, where the sign of the Hall coefficient ($R_{\rm H}$) changes from positive to negative. Upon further compression, both superconducting transition temperature ($T_{\rm c}$) and $R_{\rm H}$ exhibit a monotonous decrease. At around 41 GPa, the superconductivity is completely suppressed ($T_{\rm c}=0$), where the parameter $a$ begins to decline again and the Hall coefficient remains nearly unchanged. Our experiment results clearly demonstrate that the pressure-induced anisotropic lattice collapse plays a crucial role in tuning the interplay among multiple degrees of freedom in the superconducting system and, correspondingly, the stability of the superconductivity.
|
Received: 02 May 2024
Revised: 16 May 2024
Accepted manuscript online: 20 May 2024
|
PACS:
|
74.62.Fj
|
(Effects of pressure)
|
|
74.70.Xa
|
(Pnictides and chalcogenides)
|
|
74.25.F-
|
(Transport properties)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2022YFA1403900, 2021YFA1401800, 2018YFA0704201, and 2023YFA1406103), the National Natural Science Foundation of China (Grant Nos. U2032214, 12122414, 12104487, and 12004419), and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB25000000). |
Corresponding Authors:
Liling Sun
E-mail: llsun@iphy.ac.cn,liling.sun@hpstar.ac.cn
|
Cite this article:
Jinyu Han(韩金宇), Wenshan Hong(洪文山), Shu Cai(蔡树), Jinyu Zhao(赵金瑜), Jing Guo(郭静), Yazhou Zhou(周亚洲), Pengyu Wang(王鹏玉), Lixin Cao(曹立新), Huiqian Luo(罗会仟), Shiliang Li(李世亮), Qi Wu(吴奇), and Liling Sun(孙力玲) Coevolution of superconductivity and Hall coefficient with anisotropic lattice shrinkage in compressed KCa2Fe4As4F2 2024 Chin. Phys. B 33 077402
|
[1] Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296 [2] Ren Z A, Lu W, Yang J, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F and Zhao Z X 2008 Chin. Phys. Lett. 25 2215 [3] Zhu X, Han F, Mu G, Cheng P, Shen B, Zeng B and Wen H H 2009 Phys. Rev. B 79 220512 [4] Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C and Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262 [5] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006 [6] Iyo A, Kawashima K, Kinjo T, Nishio T, Ishida S, Fujihisa H, Gotoh Y, Kihou K, Eisaki H and Yoshida Y 2016 J. Am. Chem. Soc. 138 3410 [7] Wang Z C, He C Y, Wu S Q, Tang Z T, Liu Y, Ablimit A, Feng C M and Cao G H 2016 J. Am. Chem. Soc. 138 7856 [8] Ni N, Allred J M, Chan B C and Cava R J 2011 Proc. Natl. Acad. Sci. USA 108 E1019 [9] Sun Y L, Jiang H, Zhai H F, Bao J K, Jiao W H, Tao Q, Shen C Y, Zeng Y W, Xu Z A and Cao G H 2012 J. Am. Chem. Soc. 134 12893 [10] Wang T, Chu J, Jin H, Feng J, Wang L, Song Y, Zhang C, Xu X, Li W, Li Z, Hu T, Jiang D, Peng W, Liu X and Mu G 2019 J. Phys. Chem. C 123 13925 [11] Yang R, Le C, Zhang L, Xu B, Zhang W, Nadeem K, Xiao H, Hu J and Qiu X 2015 Phys. Rev. B 91 224507 [12] Yang R, Dai Y, Xu B, Zhang W, Qiu Z, Sui Q, Homes C C and Qiu X 2017 Phys. Rev. B 95 064506 [13] Struzhkin V V, Hemley R J, Mao H k and Timofeev Y A 1997 Nature 390 382 [14] Shimizu K, Kimura T, Furomoto S, Takeda K, Kontani K, Onuki Y and Amaya K 2001 Nature 412 316 [15] Mao W L, Mao H k, Eng P J, Trainor T P, Newville M, Kao C c, Heinz D L, Shu J, Meng Y and Hemley R J 2003 Science 302 425 [16] Sun L, Chen X J, Guo J, Gao P, Huang Q Z, Wang H, Fang M, Chen X, Chen G, Wu Q, Zhang C, Gu D, Dong X, Wang L, Yang K, Li A, Dai X, Mao H K and Zhao Z 2012 Nature 483 67 [17] Chen X J, Struzhkin V V, Yu Y, Goncharov A F, Lin C T, Mao H K and Hemley R J 2010 Nature 466 950 [18] Deng L, Zheng Y, Wu Z, Huyan S, Wu H C, Nie Y, Cho K and Chu C W 2019 Proc. Natl. Acad. Sci. USA 116 2004 [19] Guo J, Zhou Y, Huang C, Cai S, Sheng Y, Gu G, Yang C, Lin G, Yang K, Li A, Wu Q, Xiang T and Sun L 2019 Nat. Phys. 16 295 [20] Zhou Y, Guo J, Cai S, Zhao J, Gu G, Lin C, Yan H, Huang C, Yang C, Long S, Gong Y, Li Y, Li X, Wu Q, Hu J, Zhou X, Xiang T and Sun L 2022 Nat. Phys. 18 406 [21] Cai S, Zhao J, Ni N, Guo J, Yang R, Wang P, Han J, Long S, Zhou Y, Wu Q, Qiu X, Xiang T, Cava R J and Sun L 2023 Nat. Commun. 14 3116 [22] Gao L, Xue Y Y, Chen F, Xiong Q, Meng R L, Ramirez D, Chu C W, Eggert J H and Mao H K 1994 Phys. Rev. B 50 4260 [23] Huang Y E, Wu F, Wang A, Chen Y, Jiao L, Smidman M and Yuan H Q 2022 Chin. Phys. Lett. 39 097101 [24] Jinyu Z, Shu C, Yiwen C, Genda G, Hongtao Y, Jing G, Jinyu H, Pengyu W, Yazhou Z, Yanchun L, Xiaodong L, Zhian R, Qi W, Xingjiang Z, Yang D, Tao X, Ho kwang M and Liling S 2024 Chin. Phys. Lett. 41 047401 [25] Wang P, Liu C, Yang R, Cai S, Xie T, Guo J, Zhao J, Han J, Long S, Zhou Y, Li Y, Li X, Luo H, Li S, Wu Q, Qiu X, Xiang T and Sun L 2023 Phys. Rev. B 108 054415 [26] Xiang L, Meier W R, Xu M, Kaluarachchi U S, Bud’ko S L and Canfield P C 2018 Phys. Rev. B 97 174517 [27] Borisov V, Canfield P C and Valentí R 2018 Phys. Rev. B 98 064104 [28] Xiang L, Xu M, Bud’ko S L and Canfield P C 2022 Phys. Rev. B 106 134505 [29] Wu D, Hong W, Dong C, Wu X, Sui Q, Huang J, Gao Q, Li C, Song C, Luo H, Yin C, Xu Y, Luo X, Cai Y, Jia J, Wang Q, Huang Y, Liu G, Zhang S, Zhang F, Yang F, Wang Z, Peng Q, Xu Z, Qiu X, Li S, Luo H, Hu J, Zhao L and Zhou X J 2020 Phys. Rev. B 101 224508 [30] Ishida J, Iimura S and Hosono H 2017 Phys. Rev. B 96 174522 [31] Wang Z, He C, Tang Z, Wu S and Cao G 2016 Science China Materials 60 83 [32] Duan W, Chen K, Hong W, Chen X, Yang H, Li S, Luo H and Wen H H 2021 Phys. Rev. B 103 214518 [33] Hao J, Hong W, Zhou X, Xiang Y, Dai Y, Yang H, Li S, Luo H and Wen H H. 2022 Phys. Rev. B 106 014523 [34] Li Y, Zhu Z, Ye Y, Hong W, Li Y, Li S, Luo H and Wen H H. 2024 Phys. Rev. B 109 014506 [35] Wang G, Wang Z and Shi X 2016 Europhys. Lett. 116 37003 [36] Kirschner F K K, Adroja D T, Wang Z C, Lang F, Smidman M, Baker P J, Cao G H and Blundell S J 2018 Phys. Rev. B 97 060506 [37] Zhang C, Wu Q Y, Hong W S, Liu H, Zhu S X, Song J J, Zhao Y Z, Wu F Y, Liu Z T, Liu S Y, Yuan Y H, Huang H, He J, Li S, Liu H Y, Duan Y X, Luo H Q and Meng J Q 2022 Sci. China Phys. Mech. Astron. 65 237411 [38] Wang B, Wang Z C, Ishigaki K, Matsubayashi K, Eto T, Sun J, Cheng J G, Cao G H and Uwatoko Y 2019 Phys. Rev. B 99 014501 [39] Hong W, Song L, Liu B, Li Z, Zeng Z, Li Y, Wu D, Sui Q, Xie T, Danilkin S, Ghosh H, Ghosh A, Hu J, Zhao L, Zhou X, Qiu X, Li S and Luo H 2020 Phys. Rev. Lett. 125 117002 [40] Pauw V D 1958 Philips Research Reports 13 1 [41] Mao H K, Xu J and Bell P M 1986 Journal of Geophysical Research: Solid Earth 91 4673 [42] Kaluarachchi U S, Taufour V, Sapkota A, Borisov V, Kong T, Meier W R, Kothapalli K, Ueland B G, Kreyssig A, Valentí R, McQueeney R J, Goldman A I, Bud’ko S L and Canfield P C 2017 Phys. Rev. B 96 140501 [43] Stillwell R L, Wang X, Wang L, Campbell D J, Paglione J, Weir S T, Vohra Y K and Jeffries J R 2019 Phys. Rev. B 100 045152 [44] Bud’ko S L, Kogan V G, Prozorov R, Meier W R, Xu M and Canfield P C 2018 Phys. Rev. B 98 144520 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|