Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 085201    DOI: 10.1088/1674-1056/ad47e4
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Ion acoustic solitary waves in an adiabatic dusty plasma: Roles of superthermal electrons, ion loss and ionization

Qianghua Rao(饶强华)1,2, Hui Chen(陈辉)1,2, Sanqiu Liu(刘三秋)1,2,†, and Xiaochang Chen(陈小昌)1,2,‡
1 Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China;
2 Jiangxi Province Key Laboratory of Fusion and Information Control, Nanchang University, Nanchang 330031, China
Abstract  We investigate propagation of dust ion acoustic solitary wave (DIASW) in a multicomponent dusty plasma with adiabatic ions, superthermal electrons, and stationary dust. The reductive perturbation method is employed to derive the damped Korteweg-de Vries (DKdV) equation which describes DIASW. The result reveals that the adiabaticity of ions significantly modifies the basic features of the DIASW. The ionization effect makes the solitary wave grow, while collisions reduce the growth rate and even lead to the damping. With the increases in ionization cross section ${\Delta \sigma}/{\sigma_0}$, ion-to-electron density ratio ${\delta}_{\rm{ie}}$ and superthermal electrons parameter $\kappa$, the effect of ionization on DIASW enhances.
Keywords:  dust ion acoustic wave      solitary wave      ionization      adiabatic process  
Received:  22 March 2024      Revised:  30 April 2024      Accepted manuscript online:  07 May 2024
PACS:  52.25.Jm (Ionization of plasmas)  
  52.35.Mw (Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.))  
  94.05.Fg (Solitons and solitary waves)  
  94.05.Bf (Plasma interactions with dust and aerosols)  
Fund: The work was supported by the Project of Scientific and Technological Innovation Base of Jiangxi Province, China (Grant No. 20203CCD46008), the Key R&D Plan of Jiangxi Province, China (Grant No. 20223BBH80006), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20212BAB211025), and the Jiangxi Province Key Laboratory of Fusion and Information Control (Grant No. 20171BCD40005).
Corresponding Authors:  Sanqiu Liu, Xiaochang Chen     E-mail:  sqlgroup@ncu.edu;xcchen1985@ncu.edu.cn

Cite this article: 

Qianghua Rao(饶强华), Hui Chen(陈辉), Sanqiu Liu(刘三秋), and Xiaochang Chen(陈小昌) Ion acoustic solitary waves in an adiabatic dusty plasma: Roles of superthermal electrons, ion loss and ionization 2024 Chin. Phys. B 33 085201

[1] Marklund M and Shukla P K 2006 Rev. Mod. Phys. 78 591
[2] Nakamura Y, Bailung H and Shukla P K 1999 Phys. Rev. Lett. 83 1602
[3] Merlino R L 2014 J. Plasma Phys. 80 773
[4] Rao N N, Shukla P K and Yu M Y 1990 Planet. Space Sci. 38 543
[5] Shukla P K and Silin V P 1992 Phys. Scr. 45 508
[6] Barkan A, Merlino R L and D’Angelo N 1995 Phys. Plasmas 2 3563
[7] Barkan A, Angelo N D and Merlino R L 1996 Planet. Space Sci. 44 239
[8] Sugiyama H, Singh S, Omura Y, Shoji M, Nunn D and Summers D 2015 J. Geophys. Res. 120 8426
[9] Benetti M H, Silveira F E M and Caldas I L 2023 Phys. Rev. E 107 055212
[10] Yoon P H 2014 J. Geophys. Res. 119 7074
[11] Ali S, Shohaib M, Masood W, Alyousef H A and El-Tantawy S A 2023 Phys. Fluids 35 023101
[12] Mishra S K 2021 Phys. Plasmas 28 033702
[13] Vasyliunas V M 1968 J. Geophys. Res. 73 2839
[14] Sarma R, Misra A P and Adhikary N C 2018 Chin. Phys. B 27 105207
[15] Lin M M, Jiang L and Wang M Y 2023 Chin. Phys. B 32 125201
[16] Chen H, Zhou S Y, Luo R X and Liu S Q 2015 Jpn. J. Appl. Phys. 56 016101
[17] Tolba R E 2021 Eur. Phys. J. Plus 136 138
[18] Chen H and Liu S Q 2012 Astrophys. Space. Sci 339 179
[19] Mehdipoor M 2022 Waves Random Complex Media 32 2693
[20] Mayout S, Gougam L A and Tribeche M 2016 Phys. Plasmas 23 033701
[21] Ali R, Basnett A and Chatterjee P 2023 Indian J. Phys. 97 2843
[22] Shukla P K and Morfill G 1996 Phys. Lett. A 216 153
[23] D’Angelo N 1997 Phys. Plasmas 4 3422
[24] Wang X, Bhattacharjee A, Gou S K and Goree J 2001 Phys. Plasmas 8 5018
[25] Ghosh S 2005 J. Plasma Phys. 71 519
[26] Seadawy A R and Iqbal M 2021 Math. Methods Appl. Sci. 44 737
[27] Shalaby M, El-Labany S K, El-Shamy E F and Khaled M A 2010 Astrophys. Space Sci. 326 273
[28] Tamang J, Sarkar K and Saha A 2018 Physica A 505 18
[29] El-Shewy E K, Mahmoud A A, Tawfik A M, Abulwafa E M and Elgarayhi A 2014 Chin. Phys. B 23 070505
[30] Sarma R, Misra A P and Adhikary N C 2018 Chin. Phys. B 27 105207
[31] Alotaibi B M 2021 Phys. Scr. 96 125273
[32] Mamun A A, Jahan N and Shukla P K 2009 J. Plasma Phys. 75 413
[33] Tanjia F and Mamun A A 2009 J. Plasma Phys. 75 99
[34] Mamun A A, Ashrafi K S and Anowar M G M 2010 J. Plasma Phys. 76 409
[35] Rahman M S and Mamun A A 2011 Phys. Plasmas 18 123702
[36] Scales W A and Mahmoudian A 2016 Rep. Prog. Phys. 79 106802
[37] Raouafi N E, Matteini L, Squire J, et al. 2023 Space Sci. Rev. 219 8
[38] Atteya A, Sultana S and Schlickeiser R 2018 Chin. J. Phys. 56 1931
[1] Steering the energy sharing of electrons in nonsequential double ionization with orthogonally polarized two-color field
Guangqi Fan(樊光琦), Zhijie Yang(杨志杰), Fenghao Sun(孙烽豪), Jinmei Zheng(郑金梅), Yuntian Han(韩云天), Mingqian Huang(黄明谦), and Qingcao Liu(刘情操). Chin. Phys. B, 2024, 33(8): 083102.
[2] Excitation and ionization of OCS molecules in strong UV and NIR laser fields
Huijun Shi(师慧军), Yang Liu(刘洋), Tian Sun(孙添), Hang Lv(吕航), and Haifeng Xu(徐海峰). Chin. Phys. B, 2024, 33(7): 073301.
[3] Manipulating the electron dynamics in the non-sequential double ionization process of Ar atoms by an orthogonal two-color laser field
Pengzhao Wang(王鹏昭), Lijie Qian(钱丽洁), Zhenrong Sun(孙真荣), and Yan Yang(杨岩). Chin. Phys. B, 2024, 33(6): 063201.
[4] Nonlinear interaction of head-on solitary waves in integrable and nonintegrable systems
Shutian Zhang(张树甜), Shikun Liu(刘世鲲), Tengfei Jiao(矫滕菲), Min Sun(孙敏), Fenglan Hu(胡凤兰), and Decai Huang(黄德财). Chin. Phys. B, 2024, 33(5): 054501.
[5] Corrigendum to "Absolute partial and total ionization cross sections of carbon monoxide with electron collision from 350eV to 8000eV"
Taj Wali Khan, Weizhe Huang(黄伟哲), Enliang Wang(王恩亮), Xu Shan(单旭), and Xiangjun Chen(陈向军). Chin. Phys. B, 2024, 33(5): 059901.
[6] Absolute partial and total ionization cross sections of carbon monoxide with electron collision from 350 eV to 8000 eV
Taj Wali Khan, Weizhe Huang(黄伟哲), Enliang Wang(王恩亮), Xu Shan(单旭), and Xiangjun Chen(陈向军). Chin. Phys. B, 2024, 33(4): 043401.
[7] Polarization control of above-threshold ionization spectrum in elliptically polarized two-color laser fields
Fa-Cheng Jin(金发成), Hui-Hui Yang(杨慧慧), Xiao-Hong Song(宋晓红), Fei Li(李飞), Ling-Ling Du(杜玲玲), Hong-Jie Xue(薛红杰), Li-Min Wei(魏丽敏), Yue Bai(白悦), Hao-Xiang Liu(刘浩翔), Bing-Bing Wang(王兵兵), and Wei-Feng Yang(杨玮枫). Chin. Phys. B, 2024, 33(4): 043301.
[8] Theoretical investigation of electron-impact ionization of W8+ ion
Shiping Zhang(张世平), Fangjun Zhang(张芳军), Denghong Zhang(张登红), Xiaobin Ding(丁晓彬), Jun Jiang(蒋军), Luyou Xie(颉录有), Yulong Ma(马玉龙), Maijuan Li(李麦娟), Marek Sikorski, and Chenzhong Dong(董晨钟). Chin. Phys. B, 2024, 33(3): 033401.
[9] Theoretical investigations of population trapping phenomena in atomic four-color, three-step photoionization scheme
Xiao-Yong Lu(卢肖勇) and Ya-Peng Sun(孙亚鹏). Chin. Phys. B, 2024, 33(3): 033202.
[10] Attosecond ionization time delays in strong-field physics
Yongzhe Ma(马永哲), Hongcheng Ni(倪宏程), and Jian Wu(吴健). Chin. Phys. B, 2024, 33(1): 013201.
[11] Internal collision double ionization of molecules driven by co-rotating two-color circularly polarized laser pulses
Xue-Feng Li(李雪峰), Yue Qiao(乔月), Dan Wu(吴丹), Rui-Xian Yu(蔚瑞贤), Ji-Gen Chen(陈基根), Jun Wang(王俊), Fu-Ming Guo(郭福明), and Yu-Jun Yang(杨玉军). Chin. Phys. B, 2024, 33(1): 013302.
[12] Electron-impact ionization of W9+ and W10+
Runjia Bao(鲍润家), Junkui Wei(魏军奎), Lei Chen(陈雷), Bowen Li(李博文), and Ximeng Chen(陈熙萌). Chin. Phys. B, 2023, 32(6): 063401.
[13] Fragmentation dynamics of electron-impact double ionization of helium
Shiwei Liu(刘士炜), Difa Ye(叶地发), and Jie Liu(刘杰). Chin. Phys. B, 2023, 32(6): 063402.
[14] Numerical studies of isotopic selective photoionization of ytterbium in a three-step ionization scheme
Xiao-Yong Lu(卢肖勇) and Li-De Wang(王立德). Chin. Phys. B, 2023, 32(5): 053204.
[15] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[1] Tuo Li(李拓), Ke Cheng(程可), Zheng Peng(彭政), Hui Yang(杨晖), and Meiying Hou(厚美瑛). Intruder trajectory tracking in a three-dimensional vibration-driven granular system: Unveiling the mechanism of the Brazil nut effect[J]. Chin. Phys. B, 2023, 32(10): 104501 .
[2] Zhengwen Wang(王政文), Yingzhuo Han(韩英卓), Kenji Watanabe, Takashi Taniguchi, Yuhang Jiang(姜宇航), and Jinhai Mao(毛金海). Field induced Chern insulating states in twisted monolayer-bilayer graphene[J]. Chin. Phys. B, 2024, 33(6): 67301 -067301 .
[3] Fuyu Tian(田伏钰), Muhammad Faizan, Xin He(贺欣), Yuanhui Sun(孙远慧), and Lijun Zhang(张立军). Moiré superlattices arising from growth induced by screw dislocations in layered materials[J]. Chin. Phys. B, 2024, 33(7): 77403 -077403 .
[4] Wen-Chuang Shang(商文创), Yi-Ning Han(韩熠宁), Shimpei Endo, and Chao Gao(高超). Topological phases and edge modes of an uneven ladder[J]. Chin. Phys. B, 2024, 33(8): 80202 -080202 .
[5] Ao Wang(汪澳), Yu-Zhen Wei(魏玉震), Min Jiang(姜敏), Yong-Cheng Li(李泳成), Hong Chen(陈虹), and Xu Huang(黄旭). Effects of quantum noise on teleportation of arbitrary two-qubit state via five-particle Brown state[J]. Chin. Phys. B, 2024, 33(8): 80307 -080307 .
[6] Pu Wang(王璞), Zhong-Yan Li(李忠艳), and Hui-Xian Meng(孟会贤). Quantum block coherence with respect to projective measurements[J]. Chin. Phys. B, 2024, 33(8): 80308 -080308 .
[7] Yikang Chen(陈奕康) and Zong-Hong Zhu(朱宗宏). Detecting short-term gravitational waves from post-merger hyper-massive neutron stars with a kilohertz detector[J]. Chin. Phys. B, 2024, 33(8): 80401 -080401 .
[8] Jia-Yi Zhu(朱佳仪), Zhi-Min He(何志民), Cheng Huang(黄成), Jun Zeng(曾峻), Hui-Chuan Lin(林惠川), Fu-Chang Chen(陈福昌), Chao-Qun Yu(余超群), Yan Li(李燕), Yong-Tao Zhang(张永涛), Huan-Ting Chen(陈焕庭), and Ji-Xiong Pu(蒲继雄). Deep learning-assisted common temperature measurement based on visible light imaging[J]. Chin. Phys. B, 2024, 33(8): 80701 -080701 .
[9] C. S. Gomes, F. E. Jorge, and A. Canal Neto. All-electron basis sets for H to Xe specific for ZORA calculations: Applications in atoms and molecules[J]. Chin. Phys. B, 2024, 33(8): 83101 -083101 .
[10] Jialing Yang(杨嘉玲), Aoqian Shi(史奥芊), Yuchen Peng(彭宇宸), Peng Peng(彭鹏), and Jianjun Liu(刘建军). Interface state-based bound states in continuum and below-continuum-resonance modes with high-Q factors in the rotational periodic system[J]. Chin. Phys. B, 2024, 33(8): 84206 -084206 .