Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(8): 084703    DOI: 10.1088/1674-1056/ad43d3
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Integrated analysis of plasma rotation effect on HL-3 hybrid scenario

Miao Xue(薛淼), Guo-Yao Zheng(郑国尧), Lei Xue(薛雷)†, Jia-Xian Li(李佳鲜), Shuo Wang(王硕), Hai-Long Du(杜海龙), Yi-Ren Zhu(朱毅仁), and Yue Zhou(周月)
Southwestern Institute of Physics, Chengdu 610000, China
Abstract  The hybrid scenario, which has good confinement and moderate MHD instabilities, is a proposed operation scenario for international thermonuclear experimental reactor (ITER). In this work, the effect of plasma rotation on the HL-3 hybrid scenario is analyzed with the integrated modeling framework OMFIT. The results show that toroidal rotation has no obvious effect on confinement with a high line averaged density of $n_{\rm bar}\sim 7\times10^{19}$ m$^{-3}$. In this case, the ion temperature only changes from 4.7 keV to 4.4 keV with the rotation decreasing from 10$^{5 }$ rad/s to 10$^{3 }$ rad/s, which means that the turbulent heat transport is not dominant. While in the scenarios characterized by lower densities, such as $n_{\rm bar}\sim 4\times10^{19}$ m$^{-3}$, turbulent transport becomes dominant in determining heat transport. The ion temperature rises from 3.8 keV to 6.1 keV in the core as the rotation velocity increases from 10$^{3 }$ rad/s to 10$^{5 }$ rad/s. Despite the ion temperature rising, the rotation velocity does not obviously affect electron temperature or density. Additionally, it is noteworthy that the variation in rotation velocity does not significantly affect the global confinement of plasma in scenarios with low density or with high density.
Keywords:  HL-3      hybrid scenario      toroidal rotation      integrated modeling  
Received:  13 December 2023      Revised:  25 April 2024      Accepted manuscript online: 
PACS:  47.50.Cd (Modeling)  
  98.62.Dm (Kinematics, dynamics, and rotation)  
Fund: Project supported by the National Magnetic Confinement Fusion Program of China (Grants Nos. 2019YFE03040002 and 2018YFE0301101) and the Talent Project of China National Nuclear Corporation, China (Grant No. 2022JZYF-01).
Corresponding Authors:  Lei Xue     E-mail:  xuelei@swip.ac.cn

Cite this article: 

Miao Xue(薛淼), Guo-Yao Zheng(郑国尧), Lei Xue(薛雷), Jia-Xian Li(李佳鲜), Shuo Wang(王硕), Hai-Long Du(杜海龙), Yi-Ren Zhu(朱毅仁), and Yue Zhou(周月) Integrated analysis of plasma rotation effect on HL-3 hybrid scenario 2024 Chin. Phys. B 33 084703

[1] Shimada M, Campbell D J, Mukhovatov V, et al. 2007 Nucl. Fusion 47 S1
[2] Oyama N, Isayama A, Matsunaga G, Suzuki T, Takenaga H, Sakamoto Y, Nakano T, Kamada Y, Ide S and the JT-60 Team 2009 Nucl. Fusion 49 065026
[3] Turco F, Petty C C, Luce T C, Carlstrom T N, Van Zeeland M A, Heidbrink W, Carpanese F, Solomon W, Holcomb C T and Ferron J R 2015 Phys. Plasma 22 056113
[4] Hobirk J, Imbeaux F, Crisanti F, et al. 2012 Plasma Phys. Control. Fusion 54 095001
[5] Igochine V, Piovesan P, Classen I G J, et al. 2017 Nucl. Fusion 57 116027
[6] Staebler A, Sips A C C, Brambilla M, Bilato R, Dux R, Gruber O, Hobirk J, Horton L D, Maggi C F, Manini A, Maraschek M, Mück A, Na Y S, Neu R, Tardini G, Wade M R and ASDEX Upgrade Team 2005 Nucl. Fusion 45 617
[7] Gormezano C, Sips A C C, Luce T C, et al. 2007 Nucl. Fusion 47 S285
[8] Jian X, Chan V S, Chen J L, Bock A, Zohm H, Fable E, Reisner M, Guo W F and Zhuang G 2019 Nucl. Fusion 59 106038
[9] Burrell K H 1996 Phys. Plasma 4 92186
[10] Garofalo A M, Ding S, Solomon W M, Grierson B A, Jian X, Osborne T H, Holland C, Knolker M, Laggner F M, Chrystal C, Marinoni A and Petty C C 2022 Nucl. Fusion 62 056008
[11] Qian J P, Garofalo A M, Gong X Z, Ren Q L, Ding S Y, Solomon W M, Xu G S, Grierson B A, Guo W F, Holcomb C T, McClenaghan J, McKee G R, Pan C K, Huang J, Staebler G M and Wan B N 2017 Nucl. Fusion 57 056008
[12] Petty C C, Kinsey J E, Holcomb C T, DeBoo J C, Doyle E J, Ferron J R, Garofalo A M, Hyatt A W, Jackson G L, Luce T C, Murakami M, Politzer P A and Reimerdes 2016 Nucl. Fusion 56 016016
[13] Murakami M, Park J M, Giruzzi G, et al. 2011 Nucl. Fusion 51 103006
[14] Duan X R, Xu M, Zhong W L, et al. 2023 29th IAEA Fusion Energy Conference (FEC 2023), 2023 October 16-21
[15] Meneghini O, Snyder P B, Smith S P, Candy J, Staebler G M, Belli E A, Lao L L, Park J M, Green D L, Elwasif W, Grierson B A and Holland C 2016 Phys. Plasma 23 042507
[16] Meneghini O, Smith S P, Lao L L, et al. 2015 Nucl. Fusion 55 083008
[17] Lao L L, Stjohn H, Stambaugh R D, Kellman A G and Pfeiffer W 1985 Nucl. Fusion 25 1611
[18] Pfeiffer W W, Davidson R H, Miller R L and Waltz R E 1980 ONETWO: a computer code for modeling plasa transport in tokamaks p. 201
[19] Candy J, Holland C, Waltz R E, Fahe M R and Belli 2009 Phys. Plasma 16 060704
[20] Snyder P B, Groebner R J, Hughes J W, Osborne T H, Beurskens M, Leonard A W, Wilson H R and Xu X Q 2011 Nucl. Fusion 51 103016
[21] Goldston R J, McCune D, Towner H, Davis S, Hawryluk R and Schmidt G 1981 J. Comput. Phys. 43 61
[22] Lin Y L, Chan V and Prate R 2003 Phys. Plasma 10 4064
[23] Meneghini O, Snyder P B, Smith S P, Candy J, Staebler G M, Belli E A, Lao L L, Park J M, Green D L, Elwasif W, Grierson B A and Holland C 2016 Phys. Plasma 23 042507
[24] Jian X, Chen J L, Chan V S, Zhuang G, Li G Q, Zhao D, Shi N, Xu G L, Gary M. Staebler G M and Guo W F 2017 Nucl. Fusion 57 046012
[25] Chen J L, Jian X, Chan V S, et al. 2017 Plasma Phys. Control. Fusion 59 075005
[26] Zheng X W, Li J G, Hu J S, et al. 2016 Plasma Phys. Control. Fusion 58 055013
[27] Li J Q and Kishimoto Y 2004 Phys. Plasma 11 1493
[1] Numerical study of physical properties of resistive wall modes in tokamaks
Xia Xin-Nian (夏新念), Liu Yue (刘悦), Liu Chao (刘超), He Yu-Ling (何玉玲), Xia Guo-Liang (夏国良). Chin. Phys. B, 2013, 22(5): 055203.
No Suggested Reading articles found!