Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(6): 063401    DOI: 10.1088/1674-1056/aca14d
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Electron-impact ionization of W9+ and W10+

Runjia Bao(鲍润家), Junkui Wei(魏军奎), Lei Chen(陈雷), Bowen Li(李博文), and Ximeng Chen(陈熙萌)
School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
Abstract  Electron-impact single-ionization (EISI) cross sections for W$^{q+}$ ($q=9$, 10) ions have been calculated by using the level-to-level distorted-wave (LLDW) method with emphasis on the contribution of metastable states to the total ionization cross sections. Contributions from direct-ionization (DI) and excitation-autoionization (EA) processes are taken into account. The calculated cross sections include the contributions from both the ground configuration and the long-lived metastable states with lifetimes exceeding 10$^{-6}$ s. Calculated cross sections are in good agreement with experimental measurements when the influence of metastable states on the total ionization cross section are well considered.
Keywords:  tungsten ions      electron-impact ionization      relativistic distorted-wave method      metastable states  
Received:  10 May 2022      Revised:  03 November 2022      Accepted manuscript online:  09 November 2022
PACS:  34.50.Fa (Electronic excitation and ionization of atoms (including beam-foil excitation and ionization))  
  34.80.Dp (Atomic excitation and ionization)  
  32.80.Aa (Inner-shell excitation and ionization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11404152) and Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2017-94).
Corresponding Authors:  Bowen Li     E-mail:  libw@lzu.edu.cn

Cite this article: 

Runjia Bao(鲍润家), Junkui Wei(魏军奎), Lei Chen(陈雷), Bowen Li(李博文), and Ximeng Chen(陈熙萌) Electron-impact ionization of W9+ and W10+ 2023 Chin. Phys. B 32 063401

[1] Federici G2006 Phys. Scr. T124 1
[2] Groth M, Brezinsek S, Belo P, Beurskens M N A, Brix M, Clever M, Coenen J W, Corrigan C, Eich T and Flanagan J2013 Nucl. Fusion 53 093016
[3] Pitts R A, Carpentier S, Escourbiac F, Hirai T, Komarov V, Lisgo S, Kukushkin A S, Loarte A, Merola M, Sashala Naik A, Mitteau R, Sugihara M, Bazylev B and Stangeby P C2013 J. Nucl. Matt. 438 S48
[4] Putterich T, Neu R, Dux R, Whiteford A D, O'Mullane M and the ASDEX Upgrade Team2008 Plasma Phys. Control. Fusion 50 085016
[5] Pütterich T, Neu R, Dux R, Whiteford A, O'Mullane M, Summers H and the ASDEX Upgrade Team2010 Nucl. Fusion 50 025012
[6] Müller A2015 Atoms 3 120
[7] Pütterich T, Fable E, Dux R, O'Mullane M, Neu R and Siccinio M2019 Nucl. Fusion 55 056013
[8] Peacock N J, O'Mullane M G, Barnsley R and Tarbutt M2008 Can. J. Phys. 86 277
[9] kinner C H2009 Phys. Scr. 2009 014022
[10] Zhang D H, Xie L Y, Jiang J, Wu Z W, Dong C Z, Shi Y L and Qu Y Z2018 Chin. Phys. B 27 053402
[11] Jonauskas V, Kynienė A, Kucas S, Pakalka S, Masys S, Prancikevicius A, Borovik A Jr, Gharaibeh M F, Schippers S and Müller A2019 Phys. Rev. A 100 062701
[12] Chen L, Li B W and Chen X M2022 J. Quant. Spectrosc. Radiat. Transfer 285 108179
[13] Yan C L, Lu Q, Xie Y M, Li B L, Fu N, Zou Y, Chen C and Xiao J2022 Phys. Rev. A 105 032820
[14] Priti, Mita M, Kato D, Murakami I, Sakaue H A and Nakamura N2020 Phys. Rev. A 102 042818
[15] Lu Q, Yan C L, Fu N, Yang Y, Chen C Y, Xiao J, Wang K and Zou Y2021 J. Quant. Spectrosc. Radiat Transfer 262 107533
[16] Kramida A, Ralchenko Yu, Reader J and NIST ASD Team (2021). NIST Atomic Spectra Database (ver. 5.8), [Online]. Available: https://physics.nist.gov/asd [2022, May 28]. National Institute of Standards and Technology, Gaithersburg, MD
[17] Gu M F2008 Can. J Phys. 86 675
[18] Stenke M, Aichele K, Harthiramani D, Hofmann G, Steidl M, Völpel R and Salzborn E1995 J. Phys. B 28 2711
[19] Preval S P, Badnell N R and O'Mullane M G2019 J. Phys. B 52 025201
[20] Dipti, Das T, Bartschat K, Bray I, Fursa D V, Zatsarinny O, Ballance C, Chung H K and Ralchenko Yu2019 At. Data Nucl. Data Tables 127-128 1
[1] Electron-impact ionization cross section calculations for lithium-like ions
Guo-Jie Bian(卞国杰), Jyh-Ching Chang(张稚卿), Ke-Ning Huang(黄克宁), Chen-Sheng Wu(武晨晟), Yong-Jun Cheng(程勇军), Kai Wang(王凯), and Yong Wu(吴勇). Chin. Phys. B, 2022, 31(1): 013401.
[2] Measurements of argon metastable density using the tunable diode laser absorption spectroscopy in Ar and Ar/O2
Dao-Man Han(韩道满), Yong-Xin Liu(刘永新), Fei Gao(高飞), Wen-Yao Liu(刘文耀), Jun Xu(徐军), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(6): 065202.
[3] Electron-impact single ionizaiton for W4+ and W5+
Denghong Zhang(张登红), Luyou Xie(颉录有), Jun Jiang(蒋军), Zhongwen Wu(武中文), Chenzhong Dong(董晨钟), Yinglong Shi(师应龙), Yizhi Qu(屈一至). Chin. Phys. B, 2018, 27(5): 053402.
[4] Reweighted ensemble dynamics simulations: Theory, improvement, and application
Gong Lin-Chen (龚麟宸), Zhou Xin (周昕), Ouyang Zhong-Can (欧阳钟灿). Chin. Phys. B, 2015, 24(6): 060202.
[5] Electron impact excitation rate coefficients of N II ion
Yang Ning-Xuan(杨宁选),Dong Chen-Zhong(董晨钟), Jiang Jun(蒋军), and Xie Lu-You(颉录有). Chin. Phys. B, 2010, 19(9): 093101.
[6] Metastability of Ising spin chains with nearest-neighbour and next-nearest-neighbour interactions in random fields
G. Ismail, S. Hassan. Chin. Phys. B, 2002, 11(9): 948-954.
[7] SPONTANEOUS TRANSFORMATIONS OF NANOCLUSTERS
M. Rieth, W. Schommers, S. Baskoutas, C. Politis, . Chin. Phys. B, 2001, 10(13): 132-136.
No Suggested Reading articles found!