Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 033401    DOI: 10.1088/1674-1056/ad1487
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Theoretical investigation of electron-impact ionization of W8+ ion

Shiping Zhang(张世平), Fangjun Zhang(张芳军), Denghong Zhang(张登红), Xiaobin Ding(丁晓彬), Jun Jiang(蒋军), Luyou Xie(颉录有), Yulong Ma(马玉龙), Maijuan Li(李麦娟), Marek Sikorski, and Chenzhong Dong(董晨钟)
Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
Abstract  The electron-impact single ionization cross section for W8+ ion has been calculated using flexible atomic code, employing the level-to-level distorted-wave approximation. This calculations takes into account contributions form both direct ionization (DI) and excitation autoionization (EA). However, the theoretical predictions, based solely on the ground state, tends to underestimate the experimental values. This discrepancy can be mitigated by incorporation contributions from excited states. We extended the theoretical analysis, including the contributions from the long-lived metastable states with lifetimes exceeding 1.5×10-5 s. We employed two statistical models to predict the fraction of ground state ions in the parent ion beam. Assuming a 79% fraction of parent ions in ground configuration, the experiment measurements align with the predictions. Furthermore we derived the theoretical cross-section for the ground state as correlated plasma rate coefficients, and compared it with existing data. Despite the uncertainty in our calculations, our results are still acceptable.
Keywords:  tungsten ions      electron-impact ionization      cross section  
Received:  14 November 2023      Revised:  06 December 2023      Accepted manuscript online:  12 December 2023
PACS:  34.50.Fa (Electronic excitation and ionization of atoms (including beam-foil excitation and ionization))  
  34.80.Dp (Atomic excitation and ionization)  
  32.80.Aa (Inner-shell excitation and ionization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12364034), the National Key Research and Development Program of China (Grant No. 2022YFA1602501), and the Science and Technology Project of Gansu Province, China (Grant No.23YFFA0074).
Corresponding Authors:  Denghong Zhang     E-mail:  zhangdh@nwnu.edu

Cite this article: 

Shiping Zhang(张世平), Fangjun Zhang(张芳军), Denghong Zhang(张登红), Xiaobin Ding(丁晓彬), Jun Jiang(蒋军), Luyou Xie(颉录有), Yulong Ma(马玉龙), Maijuan Li(李麦娟), Marek Sikorski, and Chenzhong Dong(董晨钟) Theoretical investigation of electron-impact ionization of W8+ ion 2024 Chin. Phys. B 33 033401

[1] Kynienė A, Merkelis G, Šukys A, Masys C, Pakalka S, Kisielius R and Jonauskas V 2018 J. Phys. B: At. Mol. Opt. Phys. 51 155202
[2] Zhang D, Xie L, Jiang J, Wu Z, Dong C, Shi Y and Qu Y 2018 Chin. Phys. B 27 053402
[3] Jin F, Borovik A, Ebinger B and Schippers S 2020 J. Phys. B: At. Mol. Opt Phys. 53 075201
[4] Borovik A, Ebinger B, Schury D, Schippers S and Müller A 2016 Phys. Rev. A 93 012708
[5] Bao R, Wei J, Li B and Chen X 2022 Atoms 10 92
[6] Montague R G and Harrison M F A 1984 J. Phys. B: At. Mol. Opt Phys. 17 2707
[7] Stenke M, Aichele K, Harthiramani D, Hofmann G, Steidl M, Volpel R and Salzborn E 1995 J. Phys. B: At. Mol. Opt Phys. 28 2711
[8] Rausch J, Becker A, Spruck K, Hellhund J, Borovik A, Huber K, Schippers S and Müller A 2011 J. Phys. B: At. Mol. Opt Phys. 44 165202
[9] Schury D, Borovik A, Ebinger B, Jin F, Spruck K, Müller A and Schippers S 2019 J. Phys. B: At. Mol. Opt Phys. 53 015201
[10] Lotz W 1968 Z. Physik 216 241
[11] Kim Y K and Rudd M E 1994 Phys. Rev. A 50 3954
[12] Kim Y K, Migdalek J, Siegel W and Bieron J 1998 Phys. Rev. A 57 246
[13] Bartlett P L and Stelbovics A T 2004 Atomic Data and Nuclear Data Tables 86 235
[14] Omidvar K, Kyle H L and Sullivan E C 1972 Phys. Rev. A 5 1174
[15] Scott N S and Burke P G 1980 J. Phys. B: At. Mol. Opt Phys. 13 4299
[16] Loch S D, Ludlow J A, Pindzola M S, Whiteford A D and Griffin D C 2005 Phys. Rev. A 72 052716
[17] Kwon D H, Rhee Y J and Kim Y K 2006 International Journal of Mass Spectrometry 252 213
[18] Ballance C P, Loch S D, Pindzola M S and Griffin D C 2013 . Phys. B: At. Mol. Opt Phys. 46 055202
[19] Zhang D H and Kwon D H 2014 J. Phys. B: At. Mol. Opt Phys. 47 075202
[20] Jonauskas V, Kynienė A, Kučas S, Pakalka S, Masys I C V, Prancikevičius A, Borovik A, Gharaibeh M F, Schippers S and Müller A 2019 Phys. Rev. A 100 062701
[21] Chen L, Li B and Chen X 2022 Journal of Quantitative Spectroscopy and Radiative Transfer 285 108179
[22] Bao R, Wei J, Chen L, Li B and Chen X 2023 Chin. Phys. B 32 063401
[23] Lu Q, Yan C L, Meng J, Xu G Q, Yang Y, Chen C Y, Xiao J, Li J G, Wang J G and Zou Y 2021 Phys. Rev. A 103 022808
[24] Mingfeng G 2004 AIP Conference Proceedings 730 ISSN 0094-243X
[25] Kramida A, Ralchenko Yu, Reader J and NIST ASD Team 2023
[26] Preval S P, Badnell N R and O'Mullane M G 2018 J. Phys. B: At. Mol. Opt. Phys. 52 025201
[27] Chung H K, Chen M, Morgan W, Ralchenko Y and Lee R 2005 High Energy Density Physics 1 3
[1] Absolute partial and total ionization cross sections of carbon monoxide with electron collision from 350 eV to 8000 eV
Taj Wali Khan, Weizhe Huang(黄伟哲), Enliang Wang(王恩亮), Xu Shan(单旭), and Xiangjun Chen(陈向军). Chin. Phys. B, 2024, 33(4): 043401.
[2] State-selective charge exchange cross sections in collisions of highly-charged sulfur ions with helium and molecular hydrogen
Xiaolong Zhu(朱小龙), Shucheng Cui(崔述成), Dadi Xing(邢大地), Jiawei Xu(徐佳伟), B. Najjari, Dongmei Zhao(赵冬梅), Dalong Guo(郭大龙), Yong Gao(高永), Ruitian Zhang(张瑞田), Maogen Su(苏茂根), Shaofeng Zhang(张少锋), and Xinwen Ma(马新文). Chin. Phys. B, 2024, 33(2): 023401.
[3] Wideband low-scattering metasurface with an in-band reconfigurable transparent window
Ying Zhu(朱瑛), Weixu Yang(杨维旭), Kun Duan(段坤), Tian Jiang(姜田), Junming Zhao(赵俊明), Ke Chen(陈克), and Yijun Feng(冯一军). Chin. Phys. B, 2024, 33(2): 024102.
[4] Mutual neutralization in low-energy collisions of Na+ + H- ions
Kun Wang(王堃), Chuan Dong(董川), Yizhi Qu(屈一至), Yong Wu(吴勇), Xiaohe Lin(林晓贺), and Robert J. Buenker. Chin. Phys. B, 2023, 32(8): 083103.
[5] Electron-impact ionization of W9+ and W10+
Runjia Bao(鲍润家), Junkui Wei(魏军奎), Lei Chen(陈雷), Bowen Li(李博文), and Ximeng Chen(陈熙萌). Chin. Phys. B, 2023, 32(6): 063401.
[6] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[7] An effective method to calculate the electron impact excitation cross sections of helium from ground state to a final channel in the whole energy region
Rui Sun(孙瑞), De-Ling Zeng(曾德灵), Rui Jin(金锐), Xiao-Ying Han(韩小英), Xiang Gao(高翔), and Jia-Ming Li(李家明). Chin. Phys. B, 2023, 32(11): 113401.
[8] Oscillator strength and cross section study of the valence-shell excitations of NO2 by fast electron scattering
Qiang Sun(孙强), Jin-Feng Chen(陈锦峰), Zhi-Wei Nie(聂智伟), Jian-Hui Zhu(朱剑辉), and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2023, 32(11): 113402.
[9] State-to-state integral cross sections and rate constants for the N+(3P)+HD→NH+/ND++D/H reaction: Accurate quantum dynamics studies
Hanghang Chen(陈航航), Zijiang Yang(杨紫江), and Maodu Chen(陈茂笃). Chin. Phys. B, 2022, 31(9): 098204.
[10] New experimental measurement of natSe(n, γ) cross section between 1 eV to 1 keV at the CSNS Back-n facility
Xin-Rong Hu(胡新荣), Long-Xiang Liu(刘龙祥), Wei Jiang(蒋伟), Jie Ren(任杰), Gong-Tao Fan(范功涛), Hong-Wei Wang(王宏伟), Xi-Guang Cao(曹喜光), Long-Long Song(宋龙龙), Ying-Du Liu(刘应都), Yue Zhang(张岳), Xin-Xiang Li(李鑫祥), Zi-Rui Hao(郝子锐), Pan Kuang(匡攀), Xiao-He Wang(王小鹤), Ji-Feng Hu(胡继峰), Bing Jiang(姜炳), De-Xin Wang(王德鑫), Suyalatu Zhang(张苏雅拉吐), Zhen-Dong An(安振东), Yu-Ting Wang(王玉廷), Chun-Wang Ma(马春旺), Jian-Jun He(何建军), Jun Su(苏俊), Li-Yong Zhang(张立勇), Yu-Xuan Yang(杨宇萱), Sheng Jin(金晟), and Kai-Jie Chen(陈开杰). Chin. Phys. B, 2022, 31(8): 080101.
[11] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[12] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[13] Measurement of 232Th (n,γ) cross section at the CSNS Back-n facility in the unresolved resonance region from 4 keV to 100 keV
Bing Jiang(姜炳), Jianlong Han(韩建龙), Jie Ren(任杰), Wei Jiang(蒋伟), Xiaohe Wang(王小鹤), Zian Guo(郭子安), Jianglin Zhang(张江林), Jifeng Hu(胡继峰), Jingen Chen(陈金根), Xiangzhou Cai(蔡翔舟), Hongwei Wang(王宏伟), Longxiang Liu(刘龙祥), Xinxiang Li(李鑫祥), Xinrong Hu(胡新荣), and Yue Zhang(张岳). Chin. Phys. B, 2022, 31(6): 060101.
[14] Neutron activation cross section data library
Xiao-Long Huang(黄小龙), Zhi-Gang Ge(葛智刚), Yong-Li Jin(金永利), Hai-Cheng Wu(吴海成), Xi Tao(陶曦),Ji-Min Wang(王记民), Li-Le Liu(刘丽乐), Yue Zhang(张玥), and Xiao-Fei Wu(吴小飞). Chin. Phys. B, 2022, 31(6): 060102.
[15] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
No Suggested Reading articles found!