CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Control of interfacial reaction and defect formation in Gd/Bi2Te2.7Se0.3 composites with excellent thermoelectric and magnetocaloric properties |
Tianchang Xue(薛天畅), Ping Wei(魏平)†, Chengshan Liu(刘承姗), Longzhou Li(李龙舟), Wanting Zhu(朱婉婷), Xiaolei Nie(聂晓蕾), and Wenyu Zhao(赵文俞)‡ |
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China |
|
|
Abstract The method to combine thermoelectric (TE) and magnetocaloric (MC) cooling techniques lies in developing a new material that simultaneously possesses a large TE and good MC cooling performance. In this work, using n-type Bi$_{2}$Te$_{2.7}$Se$_{0.3}$ (BTS) as the TE base material and Gd as the second-phase MC material, Gd/BTS composites were prepared by the spark plasma sintering method. In the composites, interfacial reaction between Gd and BTS was identified, resulting in the formation of GdTe, which has a large impact on the electron concentration through the adjustment of defect concentration. The MC/TE composite containing 2.5 wt% Gd exhibited a $ZT$ value of 0.6 at 300 K, essentially retaining the original TE performance, while all the composites largely maintained the excellent MC performance of Gd. This work provides a potential pathway to achieving high performance in MC/TE composites.
|
Received: 03 February 2024
Revised: 09 April 2024
Accepted manuscript online:
|
PACS:
|
74.25.fg
|
(Thermoelectric effects)
|
|
75.30.Sg
|
(Magnetocaloric effect, magnetic cooling)
|
|
81.20.-n
|
(Methods of materials synthesis and materials processing)
|
|
68.35.Ct
|
(Interface structure and roughness)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2019YFA0704900 and 2023YFB3809400), the National Natural Science Foundation of China (Grant Nos. 52130203 and 52172232), and the Basic and Applied Basic Research Foundation of Guangdong Province (Grant No. 2022B1515120005). |
Corresponding Authors:
Ping Wei, Wenyu Zhao
E-mail: pingwei@whut.edu.cn;wyzhao@whut.edu.cn
|
Cite this article:
Tianchang Xue(薛天畅), Ping Wei(魏平), Chengshan Liu(刘承姗), Longzhou Li(李龙舟), Wanting Zhu(朱婉婷), Xiaolei Nie(聂晓蕾), and Wenyu Zhao(赵文俞) Control of interfacial reaction and defect formation in Gd/Bi2Te2.7Se0.3 composites with excellent thermoelectric and magnetocaloric properties 2024 Chin. Phys. B 33 087403
|
[1] Pezzutto S, De Felice M, Fazeli R, Kranzl L and Zambotti S 2017 Energies 10 1253 [2] Pezzutto S, Fazeli R, De Felice M and Sparber W 2016 WIREs Energy Environ. 5 649 [3] Yang L, Chen Z G, Dargusch M S and Zou J 2017 Adv. Energy Mater. 8 1701797 [4] He J and Tritt T M 2017 Science 357 1369 eaak9997 [5] Wang C Y, Zhang Y X, Han F and Jiang Z D 2023 Micromachines 14 1853 [6] Alam N, Salman Ali M, Sajid S, Sharma D and Hasan Z 2023 Sol. Energy 263 111892 [7] Chen W Y, Shi X, Zou J and Chen Z G 2022 Small Methods 6 2101235 [8] Witting I T, Chasapis T C, Ricci F, Peters M, Heinz N A, Hautier G and Snyder G J 2019 Adv. Electronic Mater. 5 1800904 [9] Hong M, Chen Z G and Zou J 2018 Chin. Phys. B 27 48403 [10] Mao J, Chen G and Ren Z F 2021 Nat. Mater. 20 454 [11] Saberi Y and Sajjadi S A 2022 J. Alloys Compd. 904 163918 [12] Greco A, Farina A R and Masselli C 2021 Italian J. Eng. Sci. 65 58 [13] Ram N R, Prakash M, Naresh U, Kumar N S, Sarmash T S, Subbarao T, Kumar R J, Kumar G R and Naidu K C B 2018 J. Supercond. Nov. Magn. 31 1971 [14] Kitanovski A, Plaznik U, Tomc U and Poredoš A 2015 Int. J. Refrig. 57 288 [15] Gschneidner K A and Pecharsky V K 2008 Int. J. Refrig. 31 945 [16] Dall’olio S, Masche M, Liang J, Insinga A R, Eriksen D K, Bjørk R, Nielsen K K, Barcza A, Vieyra H A, Beek N V, Bez H N, Engelbrecht K and Bahl C R H 2021 Int. J. Refrig. 132 243 [17] Kitanovski A 2020 Adv. Energy Mater. 10 1903741 [18] Xu S S, Fu Q, Zhou Y F, Peng L, Gao X Q, Li Z X, Gong M Q, Dong X Q and Shen J 2023 Chin. Phys. B 32 27502 [19] Kamran M S, Ahmad H O and Wang H S 2020 Renew. Sust. Energ. Rev. 133 110247 [20] Wei P, Li L Z, Zhu W T, Nie X L, Zhang J Q, Zhao W Y and Zhang Q J 2022 Mater. China 41 965 [21] Tomc U, Tušek J, Kitanovski A and Poredoš A 2013 Appl. Therm. Eng. 58 1 [22] Monfared B 2017 Int. J. Refrig. 74 324 [23] Li C C, Zhao W Y and Zhang Q J 2022 Sci. Bull. 67 891 [24] Tan G, Zhao L D and Kanatzidis M G 2016 Chem. Rev. 116 12123 [25] Scheibel F, Gottschall T, Taubel A, Fries M, Skokov K P, Terwey A, Keune W, Ollefs K, Wende H, Farle M, Acet M, Gutfleisch O and Gruner M E 2018 Energy Technol. 6 1397 [26] Wei P, Ke B, Xing L, Li C C, Ma S F, Nie X L, Zhu W T, Sang X H, Zhang Q J, Van Tendeloo G and Zhao W Y 2020 Mater. Charact. 163 110240 [27] Wang B, Yu J, Li C C, Nie X L, Zhu W T, Wei P, Zhao W Y and Zhang Q J 2023 J. Inorg. Mater. 38 663 [28] Xing L, Cui W J, Sang X H, Hu F X, Wei P, Zhu W T, Nie X L, Zhang Q J and Zhao W Y 2021 J. Materiomics 7 998 [29] Li L Z, Wei P, Ke B, Nie X L, Zhu W, Zhao W Y and Zhang Q J 2023 Mater. Charact. 199 112760 [30] Li M, An X Z and Wu Y H 2023 Adv. Powder Technol. 34 103953 [31] Burrola-Gandara L A, Santillan-Rodriguez C R, Rivera-Gómez F J, Saenz-Hernandez R J, Botello-Zubiate M E and Matutes-Aquino J A 2015 J. Appl. Phys. 117 17D144 [32] Franco V, Blázquez J S, Ingale B and Conde A 2012 Annu. Rev. Mater. Res. 42 305 [33] Gayner C and Kar K K 2016 Prog. Mater Sci. 83 330 [34] Liu C S, Xu W J, Wei P, Ke S Q, Cui W J, Li L Z, Liang D, Ye X F, Chen T T, Nie X L, Zhu W, Zhao W Y and Zhang Q J 2024 Energy Environ. Mater. 0 12710 [35] Rhoderick E H and Rothwarf A 1979 Phys. Today 32 66 [36] Ahamed I, Chauhan Y S, Bhowmick S and Agarwal A 2023 Com. Mater. Sci. 216 111869 [37] Ryu B 2018 J. Korean Phy. Soc. 72 122 [38] Zhu Y K, Jin Y F, Zhu J B, Dong X Y, Liu M, Sun Y X, Guo M C, Li F S, Guo F K, Zhang Q, Liu Z H, Cai W and Sui J H 2023 Adv. Sci. 10 2206395 [39] Hu C L, Xia K Y, Fu C G, Zhao X B and Zhu T J 2022 Energy Environ. Sci. 15 1406 [40] Li S K, Liu Y D, Liu F S, He D S, He J Q, Luo J, Xiao Y G and Pan F 2018 Nano Energy 49 257 [41] Samanta M, Pal K, Waghmare U V and Biswas K 2020 Angew. Chem. Int. Ed. 59 4822 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|