Multiple surface states, nontrivial band topology, and antiferromagnetism in GdAuAl4Ge2
Chengcheng Zhang(张成成)1, Yuan Wang(王渊)1, Fayuan Zhang(张发远)1, Hongtao Rong(戎洪涛)1, Yongqing Cai(蔡永青)1, Le Wang(王乐)1, Xiao-Ming Ma(马小明)1, Shu Guo(郭抒)1, Zhongjia Chen(陈仲佳)2,3, Yanan Wang(王亚南)2,3, Zhicheng Jiang(江志诚)4, Yichen Yang(杨逸尘)4, Zhengtai Liu(刘正太)4, Mao Ye(叶茂)4, Junhao Lin(林君浩)1, Jiawei Mei(梅佳伟)1, Zhanyang Hao(郝占阳)1,†, Zijuan Xie(谢子娟)5,‡, and Chaoyu Chen(陈朝宇)1,§
1 Shenzhen Institute for Quantum Science and Engineering(SIQSE) and Department of Physics, Southern University of Science and Technology(SUSTech), Shenzhen 518055, China; 2 Songshan Lake Materials Laboratory, Dongguan 523000, China; 3 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 4 State Key Laboratory of Functional Materials for Informatics and Center for Excellence in Superconducting Electronics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; 5 International School of Microelectronics, Dongguan University of Technology, Dongguan 523000, China
Abstract Magnetic topological states of matter provide a fertile playground for emerging topological physics and phenomena. The current main focus is on materials whose magnetism stems from 3d magnetic transition elements, e.g., MnBiTe, FeSn, and CoSnS. In contrast, topological materials with the magnetism from rare earth elements remain largely unexplored. Here we report rare earth antiferromagnet GdAuAlGe as a candidate magnetic topological metal. Angle resolved photoemission spectroscopy (ARPES) and first-principles calculations have revealed multiple bulk bands crossing the Fermi level and pairs of low energy surface states. According to the parity and Wannier charge center analyses, these bulk bands possess nontrivial topology, establishing a strong topological insulator state in the nonmagnetic phase. Furthermore, the surface band pairs exhibit strong termination dependence which provides insight into their origin. Our results suggest GdAuAlGe as a rare earth platform to explore the interplay between band topology, magnetism and f electron correlation, calling for further study targeting on its magnetic structure, magnetic topology state, transport behavior, and microscopic properties.
(Surface states, band structure, electron density of states)
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1403700), the National Natural Science Foundation of China (Grant No. 12074163), the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grants Nos. 2022B1515020046, 2022B1515130005, and 2021B1515130007), the Innovative and Entrepreneurial Research Team Program of Guangdong Province, China (Grant Nos. 2019ZT08C044), and Shenzhen Science and Technology Program (Grant No. KQTD20190929173815000). C. C. acknowledges the assistance of SUSTech Core Research Facilities.
Chengcheng Zhang(张成成), Yuan Wang(王渊), Fayuan Zhang(张发远), Hongtao Rong(戎洪涛), Yongqing Cai(蔡永青), Le Wang(王乐), Xiao-Ming Ma(马小明), Shu Guo(郭抒), Zhongjia Chen(陈仲佳), Yanan Wang(王亚南), Zhicheng Jiang(江志诚), Yichen Yang(杨逸尘), Zhengtai Liu(刘正太), Mao Ye(叶茂), Junhao Lin(林君浩), Jiawei Mei(梅佳伟), Zhanyang Hao(郝占阳), Zijuan Xie(谢子娟), and Chaoyu Chen(陈朝宇) Multiple surface states, nontrivial band topology, and antiferromagnetism in GdAuAl4Ge2 2023 Chin. Phys. B 32 077401
[1] Tokura Y, Yasuda K and Tsukazaki A 2019 Nat. Rev. Phys.1 126 [2] Bernevig B A, Felser C and Beidenkopf H 2022 Nature603 41 [3] Wang Y, Ma X M, Hao Z, Cai Y, Rong H, Zhang F, Chen W, Zhang C, Lin J, Zhao Y, Liu C, Liu Q and Chen C 2023 Natl. Sci. Rev. nwad066 [4] Wang Y, Zhang F, Zeng M, Sun H, Hao Z, Cai Y, Rong H, Zhang C, Liu C, Ma X, Wang L, Guo S, Lin J, Liu Q, Liu C and Chen C 2023 Front. Phys. 18 21304 [5] Šmejkal L, MacDonald A H, Sinova J, Nakatsuji S and Jungwirth T 2022 Nat. Rev. Mater. 7 482 [6] Tokura Y, Kawasaki M and Nagaosa N 2017 Nat. Phys.13 1056 [7] Armitage N P and Wu L 2019 Scipost Phys.6 046 [8] Fei F, Zhang S, Zhang M, Shah S A, Song F, Wang X and Wang B 2019 Adv. Mater.32 e1904593 [9] Zhan G, Wang H and Zhang H 2020 Physics 49 817 (in Chinese) [10] He K 2020 npj Quantum Mater. 5 90 [11] Ning W and Mao Z 2020 APL Mater.8 090701 [12] Li Y and Xu Y 2021 Comput. Mater. Sci190 110262 [13] Sekine A and Nomura K 2021 J. Appl. Phys.129 141101 [14] Sun H M and He Q L 2021 Acta Phys. Sin.70 127302 (in Chinese) [15] Wang P, Ge J, Li J, Liu Y, Xu Y and Wang J 2021 Innovation 2 100098 [16] Zhao Y and Liu Q 2021 Appl. Phys. Lett. 119 060502 [17] Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys.90 015001 [18] Liu E and Zhang S 2019 Sci. Sin.-Phys. Mech. As. 49 127001 [19] Otrokov M M, Klimovskikh, II, Bentmann H, et al. 2019 Nature 576 416 [20] Gong Y, Guo J, Li J, et al. 2019 Chin. Phys. Lett.36 076801 [21] Li J, Li Y, Du S, Wang Z, Gu B L, Zhang S C, He K, Duan W and Xu Y 2019 Sci. Adv. 5 eaaw5685 [22] Otrokov M M, Rusinov I P, Blanco-Rey M, Hoffmann M, Vyazovskaya A Y, Eremeev S V, Ernst A, Echenique P M, Arnau A and Chulkov E V 2019 Phys. Rev. Lett.122 107202 [23] Sun H, Xia B, Chen Z, Zhang Y, Liu P, Yao Q, Tang H, Zhao Y, Xu H and Liu Q 2019 Phys. Rev. Lett.123 096401 [24] Zhang D, Shi M, Zhu T, Xing D, Zhang H and Wang J 2019 Phys. Rev. Lett.122 206401 [25] Chen Y J, Xu L X, Li J H, et al. 2019 Phys. Rev. X9 041040 [26] Lu R, Sun H, Kumar S, et al. 2021 Phys. Rev. X11 011039 [27] Gao A, Liu Y F, Hu C, et al. 2021 Nature595 521 [28] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H and Zhang Y 2020 Science367 895 [29] Ge J, Liu Y, Li J, Li H, Luo T, Wu Y, Xu Y and Wang J 2020 Natl. Sci. Rev.7 1280 [30] Liu C, Wang Y, Li H, Wu Y, Li Y, Li J, He K, Xu Y, Zhang J and Wang Y 2020 Nat. Mater.19 522 [31] Liu C, Wang Y, Yang M, Mao J, Li H, Li Y, Li J, Zhu H, Wang J, Li L, Wu Y, Xu Y, Zhang J and Wang Y 2021 Nat. Commun.12 4647 [32] Kang M, Ye L, Fang S, et al. 2020 Nat. Mater.19 163 [33] Ye L, Kang M, Liu J, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature555 638 [34] Kuroda K, Tomita T, Suzuki M T, et al. 2017 Nat. Mater.16 1090 [35] Nakatsuji S, Kiyohara N and Higo T 2015 Nature527 212 [36] Reichlova H, Janda T, Godinho J, Markou A, Kriegner D, Schlitz R, Zelezny J, Soban Z, Bejarano M, Schultheiss H, Nemec P, Jungwirth T, Felser C, Wunderlich J and Goennenwein S T B 2019 Nat. Commun.10 5459 [37] Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C and Chen Y L 2019 Science365 1282 [38] Liu E, Sun Y, Kumar N, et al. 2018 Nat. Phys.14 1125 [39] Belopolski I, Chang G, Cochran T A, et al. 2022 Nature604 647 [40] Chang G, Xu S Y, Zhou X, Huang S M, Singh B, Wang B, Belopolski I, Yin J, Zhang S, Bansil A, Lin H and Hasan M Z 2017 Phys. Rev. Lett.119 156401 [41] Ghimire N J, Dally R L, Poudel L, Jones D C, Michel D, Magar N T, Bleuel M, McGuire M A, Jiang J S, Mitchell J F, Lynn J W and Mazin I I 2020 Sci. Adv.6 eabe2680 [42] Yin J X, Ma W, Cochran T A, et al. 2020 Nature583 533 [43] Dhakal G, Cheenicode Kabeer F, Pathak A K, Kabir F, Poudel N, Filippone R, Casey J, Pradhan Sakhya A, Regmi S, Sims C, Dimitri K, Manfrinetti P, Gofryk K, Oppeneer P M and Neupane M 2021 Phys. Rev. B104 L161115 [44] Li M, Wang Q, Wang G, Yuan Z, Song W, Lou R, Liu Z, Huang Y, Liu Z, Lei H, Yin Z and Wang S 2021 Nat. Commun.12 3129 [45] Ma W, Xu X, Yin J X, Yang H, Zhou H, Cheng Z J, Huang Y, Qu Z, Wang F, Hasan M Z and Jia S 2021 Phys. Rev. Lett.126 246602 [46] Peng S, Han Y, Pokharel G, Shen J, Li Z, Hashimoto M, Lu D, Ortiz B R, Luo Y, Li H, Guo M, Wang B, Cui S, Sun Z, Qiao Z, Wilson S D and He J 2021 Phys. Rev. Lett.127 266401 [47] Gu X, Chen C, Wei W S, et al. 2022 Phys. Rev. B105 155108 [48] Hu Y, Wu X, Yang Y, Gao S, Plumb N C, Schnyder A P, Xie W, Ma J and Shi M 2022 Sci. Adv. 8 eadd2024 [49] Yang T Y, Wan Q, Song J P, Du Z, Tang J, Wang Z W, Plumb N C, Radovic M, Wang G W, Wang G Y, Sun Z, Yin J X, Chen Z H, Huang Y B, Yu R, Shi M, Xiong Y M and Xu N 2022 Quantum Frontiers1 14 [50] Wu X and Kanatzidis M G 2005 J. Solid State Chem.178 3233 [51] Feng K, Leahy I A, Oladehin O, Wei K, Lee M and Baumbach R 2022 J. Magn. Magn. Mater.564 170006 [52] Canfield P C, Kong T, Kaluarachchi U S and Jo N H 2016 Philos. Mag.96 84 [53] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 [54] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 [55] Kresse G and Furthmüller J 1996 Phys. Rev. B54 11169 [56] Monkhorst H J and Pack J D 1976 Phys. Rev. B13 5188 [57] Liechtenstein A I, Anisimov V I and Zaanen J 1995 Phys. Rev. B 52 R5467 [58] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun.178 685 [59] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys.84 1419
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.