Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 077401    DOI: 10.1088/1674-1056/acca0e
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Multiple surface states, nontrivial band topology, and antiferromagnetism in GdAuAl4Ge2

Chengcheng Zhang(张成成)1, Yuan Wang(王渊)1, Fayuan Zhang(张发远)1, Hongtao Rong(戎洪涛)1, Yongqing Cai(蔡永青)1, Le Wang(王乐)1, Xiao-Ming Ma(马小明)1, Shu Guo(郭抒)1, Zhongjia Chen(陈仲佳)2,3, Yanan Wang(王亚南)2,3, Zhicheng Jiang(江志诚)4, Yichen Yang(杨逸尘)4, Zhengtai Liu(刘正太)4, Mao Ye(叶茂)4, Junhao Lin(林君浩)1, Jiawei Mei(梅佳伟)1, Zhanyang Hao(郝占阳)1,†, Zijuan Xie(谢子娟)5,‡, and Chaoyu Chen(陈朝宇)1,§
1 Shenzhen Institute for Quantum Science and Engineering(SIQSE) and Department of Physics, Southern University of Science and Technology(SUSTech), Shenzhen 518055, China;
2 Songshan Lake Materials Laboratory, Dongguan 523000, China;
3 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
4 State Key Laboratory of Functional Materials for Informatics and Center for Excellence in Superconducting Electronics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
5 International School of Microelectronics, Dongguan University of Technology, Dongguan 523000, China
Abstract  Magnetic topological states of matter provide a fertile playground for emerging topological physics and phenomena. The current main focus is on materials whose magnetism stems from 3d magnetic transition elements, e.g., MnBi$_{{2}}$Te$_{4}$, Fe$_{{3}}$Sn$_{{2}}$, and Co$_{3}$Sn$_{{2}}$S$_{2}$. In contrast, topological materials with the magnetism from rare earth elements remain largely unexplored. Here we report rare earth antiferromagnet GdAuAl$_{{4}}$Ge$_{{2}}$ as a candidate magnetic topological metal. Angle resolved photoemission spectroscopy (ARPES) and first-principles calculations have revealed multiple bulk bands crossing the Fermi level and pairs of low energy surface states. According to the parity and Wannier charge center analyses, these bulk bands possess nontrivial $Z_{{2}}$ topology, establishing a strong topological insulator state in the nonmagnetic phase. Furthermore, the surface band pairs exhibit strong termination dependence which provides insight into their origin. Our results suggest GdAuAl$_{{4}}$Ge$_{2}$ as a rare earth platform to explore the interplay between band topology, magnetism and f electron correlation, calling for further study targeting on its magnetic structure, magnetic topology state, transport behavior, and microscopic properties.
Keywords:  magnetic topological material      surface state      ARPES      topological invariant  
Received:  23 March 2023      Revised:  04 April 2023      Accepted manuscript online:  04 April 2023
PACS:  74.25.Jb (Electronic structure (photoemission, etc.))  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.18.+y (Fermi surface: calculations and measurements; effective mass, g factor)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1403700), the National Natural Science Foundation of China (Grant No. 12074163), the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grants Nos. 2022B1515020046, 2022B1515130005, and 2021B1515130007), the Innovative and Entrepreneurial Research Team Program of Guangdong Province, China (Grant Nos. 2019ZT08C044), and Shenzhen Science and Technology Program (Grant No. KQTD20190929173815000). C. C. acknowledges the assistance of SUSTech Core Research Facilities.
Corresponding Authors:  Zhanyang Hao, Zijuan Xie, Chaoyu Chen     E-mail:  11849277@mail.sustech.edu.cn;zjxie@dgut.edu.cn;chency@sustech.edu.cn

Cite this article: 

Chengcheng Zhang(张成成), Yuan Wang(王渊), Fayuan Zhang(张发远), Hongtao Rong(戎洪涛), Yongqing Cai(蔡永青), Le Wang(王乐), Xiao-Ming Ma(马小明), Shu Guo(郭抒), Zhongjia Chen(陈仲佳), Yanan Wang(王亚南), Zhicheng Jiang(江志诚), Yichen Yang(杨逸尘), Zhengtai Liu(刘正太), Mao Ye(叶茂), Junhao Lin(林君浩), Jiawei Mei(梅佳伟), Zhanyang Hao(郝占阳), Zijuan Xie(谢子娟), and Chaoyu Chen(陈朝宇) Multiple surface states, nontrivial band topology, and antiferromagnetism in GdAuAl4Ge2 2023 Chin. Phys. B 32 077401

[1] Tokura Y, Yasuda K and Tsukazaki A 2019 Nat. Rev. Phys. 1 126
[2] Bernevig B A, Felser C and Beidenkopf H 2022 Nature 603 41
[3] Wang Y, Ma X M, Hao Z, Cai Y, Rong H, Zhang F, Chen W, Zhang C, Lin J, Zhao Y, Liu C, Liu Q and Chen C 2023 Natl. Sci. Rev. nwad066
[4] Wang Y, Zhang F, Zeng M, Sun H, Hao Z, Cai Y, Rong H, Zhang C, Liu C, Ma X, Wang L, Guo S, Lin J, Liu Q, Liu C and Chen C 2023 Front. Phys. 18 21304
[5] Šmejkal L, MacDonald A H, Sinova J, Nakatsuji S and Jungwirth T 2022 Nat. Rev. Mater. 7 482
[6] Tokura Y, Kawasaki M and Nagaosa N 2017 Nat. Phys. 13 1056
[7] Armitage N P and Wu L 2019 Scipost Phys. 6 046
[8] Fei F, Zhang S, Zhang M, Shah S A, Song F, Wang X and Wang B 2019 Adv. Mater. 32 e1904593
[9] Zhan G, Wang H and Zhang H 2020 Physics 49 817 (in Chinese)
[10] He K 2020 npj Quantum Mater. 5 90
[11] Ning W and Mao Z 2020 APL Mater. 8 090701
[12] Li Y and Xu Y 2021 Comput. Mater. Sci 190 110262
[13] Sekine A and Nomura K 2021 J. Appl. Phys. 129 141101
[14] Sun H M and He Q L 2021 Acta Phys. Sin. 70 127302 (in Chinese)
[15] Wang P, Ge J, Li J, Liu Y, Xu Y and Wang J 2021 Innovation 2 100098
[16] Zhao Y and Liu Q 2021 Appl. Phys. Lett. 119 060502
[17] Armitage N P, Mele E J and Vishwanath A 2018 Rev. Mod. Phys. 90 015001
[18] Liu E and Zhang S 2019 Sci. Sin.-Phys. Mech. As. 49 127001
[19] Otrokov M M, Klimovskikh, II, Bentmann H, et al. 2019 Nature 576 416
[20] Gong Y, Guo J, Li J, et al. 2019 Chin. Phys. Lett. 36 076801
[21] Li J, Li Y, Du S, Wang Z, Gu B L, Zhang S C, He K, Duan W and Xu Y 2019 Sci. Adv. 5 eaaw5685
[22] Otrokov M M, Rusinov I P, Blanco-Rey M, Hoffmann M, Vyazovskaya A Y, Eremeev S V, Ernst A, Echenique P M, Arnau A and Chulkov E V 2019 Phys. Rev. Lett. 122 107202
[23] Sun H, Xia B, Chen Z, Zhang Y, Liu P, Yao Q, Tang H, Zhao Y, Xu H and Liu Q 2019 Phys. Rev. Lett. 123 096401
[24] Zhang D, Shi M, Zhu T, Xing D, Zhang H and Wang J 2019 Phys. Rev. Lett. 122 206401
[25] Chen Y J, Xu L X, Li J H, et al. 2019 Phys. Rev. X 9 041040
[26] Lu R, Sun H, Kumar S, et al. 2021 Phys. Rev. X 11 011039
[27] Gao A, Liu Y F, Hu C, et al. 2021 Nature 595 521
[28] Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H and Zhang Y 2020 Science 367 895
[29] Ge J, Liu Y, Li J, Li H, Luo T, Wu Y, Xu Y and Wang J 2020 Natl. Sci. Rev. 7 1280
[30] Liu C, Wang Y, Li H, Wu Y, Li Y, Li J, He K, Xu Y, Zhang J and Wang Y 2020 Nat. Mater. 19 522
[31] Liu C, Wang Y, Yang M, Mao J, Li H, Li Y, Li J, Zhu H, Wang J, Li L, Wu Y, Xu Y, Zhang J and Wang Y 2021 Nat. Commun. 12 4647
[32] Kang M, Ye L, Fang S, et al. 2020 Nat. Mater. 19 163
[33] Ye L, Kang M, Liu J, von Cube F, Wicker C R, Suzuki T, Jozwiak C, Bostwick A, Rotenberg E, Bell D C, Fu L, Comin R and Checkelsky J G 2018 Nature 555 638
[34] Kuroda K, Tomita T, Suzuki M T, et al. 2017 Nat. Mater. 16 1090
[35] Nakatsuji S, Kiyohara N and Higo T 2015 Nature 527 212
[36] Reichlova H, Janda T, Godinho J, Markou A, Kriegner D, Schlitz R, Zelezny J, Soban Z, Bejarano M, Schultheiss H, Nemec P, Jungwirth T, Felser C, Wunderlich J and Goennenwein S T B 2019 Nat. Commun. 10 5459
[37] Liu D F, Liang A J, Liu E K, Xu Q N, Li Y W, Chen C, Pei D, Shi W J, Mo S K, Dudin P, Kim T, Cacho C, Li G, Sun Y, Yang L X, Liu Z K, Parkin S S P, Felser C and Chen Y L 2019 Science 365 1282
[38] Liu E, Sun Y, Kumar N, et al. 2018 Nat. Phys. 14 1125
[39] Belopolski I, Chang G, Cochran T A, et al. 2022 Nature 604 647
[40] Chang G, Xu S Y, Zhou X, Huang S M, Singh B, Wang B, Belopolski I, Yin J, Zhang S, Bansil A, Lin H and Hasan M Z 2017 Phys. Rev. Lett. 119 156401
[41] Ghimire N J, Dally R L, Poudel L, Jones D C, Michel D, Magar N T, Bleuel M, McGuire M A, Jiang J S, Mitchell J F, Lynn J W and Mazin I I 2020 Sci. Adv. 6 eabe2680
[42] Yin J X, Ma W, Cochran T A, et al. 2020 Nature 583 533
[43] Dhakal G, Cheenicode Kabeer F, Pathak A K, Kabir F, Poudel N, Filippone R, Casey J, Pradhan Sakhya A, Regmi S, Sims C, Dimitri K, Manfrinetti P, Gofryk K, Oppeneer P M and Neupane M 2021 Phys. Rev. B 104 L161115
[44] Li M, Wang Q, Wang G, Yuan Z, Song W, Lou R, Liu Z, Huang Y, Liu Z, Lei H, Yin Z and Wang S 2021 Nat. Commun. 12 3129
[45] Ma W, Xu X, Yin J X, Yang H, Zhou H, Cheng Z J, Huang Y, Qu Z, Wang F, Hasan M Z and Jia S 2021 Phys. Rev. Lett. 126 246602
[46] Peng S, Han Y, Pokharel G, Shen J, Li Z, Hashimoto M, Lu D, Ortiz B R, Luo Y, Li H, Guo M, Wang B, Cui S, Sun Z, Qiao Z, Wilson S D and He J 2021 Phys. Rev. Lett. 127 266401
[47] Gu X, Chen C, Wei W S, et al. 2022 Phys. Rev. B 105 155108
[48] Hu Y, Wu X, Yang Y, Gao S, Plumb N C, Schnyder A P, Xie W, Ma J and Shi M 2022 Sci. Adv. 8 eadd2024
[49] Yang T Y, Wan Q, Song J P, Du Z, Tang J, Wang Z W, Plumb N C, Radovic M, Wang G W, Wang G Y, Sun Z, Yin J X, Chen Z H, Huang Y B, Yu R, Shi M, Xiong Y M and Xu N 2022 Quantum Frontiers 1 14
[50] Wu X and Kanatzidis M G 2005 J. Solid State Chem. 178 3233
[51] Feng K, Leahy I A, Oladehin O, Wei K, Lee M and Baumbach R 2022 J. Magn. Magn. Mater. 564 170006
[52] Canfield P C, Kong T, Kaluarachchi U S and Jo N H 2016 Philos. Mag. 96 84
[53] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[54] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[55] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[56] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[57] Liechtenstein A I, Anisimov V I and Zaanen J 1995 Phys. Rev. B 52 R5467
[58] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[59] Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 2012 Rev. Mod. Phys. 84 1419
[1] Single crystal growth and electronic structure of Rh-doped Sr3Ir2O7
Bingqian Wang(王冰倩), Shuting Peng(彭舒婷), Zhipeng Ou(欧志鹏), Yuchen Wang(王宇晨), Muhammad Waqas, Yang Luo(罗洋), Zhiyuan Wei(魏志远), Linwei Huai(淮琳崴),Jianchang Shen(沈建昌), Yu Miao(缪宇), Xiupeng Sun(孙秀鹏), Yuewei Yin(殷月伟), and Junfeng He(何俊峰). Chin. Phys. B, 2023, 32(8): 087108.
[2] Flat band in hole-doped transition metal dichalcogenide observed by angle-resolved photoemission spectroscopy
Zilu Wang(王子禄), Haoyu Dong(董皓宇), Weichang Zhou(周伟昌), Zhihai Cheng(程志海), and Shancai Wang(王善才). Chin. Phys. B, 2023, 32(6): 067103.
[3] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[4] Exploring Majorana zero modes in iron-based superconductors
Geng Li(李更), Shiyu Zhu(朱诗雨), Peng Fan(范朋), Lu Cao(曹路), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 080301.
[5] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[6] Conservation of the particle-hole symmetry in the pseudogap state in optimally-doped Bi2Sr2CuO6+δ superconductor
Hongtao Yan(闫宏涛), Qiang Gao(高强), Chunyao Song(宋春尧), Chaohui Yin(殷超辉), Yiwen Chen(陈逸雯), Fengfeng Zhang(张丰丰), Feng Yang(杨峰), Shenjin Zhang(张申金), Qinjun Peng(彭钦军), Guodong Liu(刘国东), Lin Zhao(赵林), Zuyan Xu(许祖彦), and X. J. Zhou(周兴江). Chin. Phys. B, 2022, 31(8): 087401.
[7] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
[8] Electronic structure and spin–orbit coupling in ternary transition metal chalcogenides Cu2TlX2 (X = Se, Te)
Na Qin(秦娜), Xian Du(杜宪), Yangyang Lv(吕洋洋), Lu Kang(康璐), Zhongxu Yin(尹中旭), Jingsong Zhou(周景松), Xu Gu(顾旭), Qinqin Zhang(张琴琴), Runzhe Xu(许润哲), Wenxuan Zhao(赵文轩), Yidian Li(李义典), Shuhua Yao(姚淑华), Yanfeng Chen(陈延峰), Zhongkai Liu(柳仲楷), Lexian Yang(杨乐仙), and Yulin Chen(陈宇林). Chin. Phys. B, 2022, 31(3): 037101.
[9] Determination of the surface states from the ultrafast electronic states in a thermoelectric material
Tongyao Wu(吴桐尧), Hongyuan Wang(王洪远), Yuanyuan Yang(杨媛媛), Shaofeng Duan(段绍峰), Chaozhi Huang(黄超之), Tianwei Tang(唐天威), Yanfeng Guo(郭艳峰), Weidong Luo(罗卫东), and Wentao Zhang(张文涛). Chin. Phys. B, 2022, 31(2): 027902.
[10] Observation of multiple charge density wave phases in epitaxial monolayer 1T-VSe2 film
Junyu Zong(宗君宇), Yang Xie(谢阳), Qinghao Meng(孟庆豪), Qichao Tian(田启超), Wang Chen(陈望), Xuedong Xie(谢学栋), Shaoen Jin(靳少恩), Yongheng Zhang(张永衡), Li Wang(王利), Wei Ren(任伟), Jian Shen(沈健), Aixi Chen(陈爱喜), Pengdong Wang(王鹏栋), Fang-Sen Li(李坊森), Zhaoyang Dong(董召阳), Can Wang(王灿), Jian-Xin Li(李建新), and Yi Zhang(张翼). Chin. Phys. B, 2022, 31(10): 107301.
[11] High-resolution angle-resolved photoemission study of large magnetoresistance topological semimetal CaAl4
Xu-Chuan Wu(吴徐传), Shen Xu(徐升), Jian-Feng Zhang(张建丰), Huan Ma(马欢), Kai Liu(刘凯), Tian-Long Xia(夏天龙), and Shan-Cai Wang(王善才). Chin. Phys. B, 2021, 30(9): 097303.
[12] Unusual electronic structure of Dirac material BaMnSb2 revealed by angle-resolved photoemission spectroscopy
Hongtao Rong(戎洪涛), Liqin Zhou(周丽琴), Junbao He(何俊宝), Chunyao Song(宋春尧), Yu Xu(徐煜), Yongqing Cai(蔡永青), Cong Li(李聪), Qingyan Wang(王庆艳), Lin Zhao(赵林), Guodong Liu(刘国东), Zuyan Xu(许祖彦), Genfu Chen(陈根富), Hongming Weng(翁红明), and Xingjiang Zhou(周兴江). Chin. Phys. B, 2021, 30(6): 067403.
[13] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[14] Distribution of donor states on the surfaceof AlGaN/GaN heterostructures
Yue-Bo Liu(柳月波), Hong-Hui Liu(刘红辉), Jun-Yu Shen(沈俊宇), Wan-Qing Yao(姚婉青), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(12): 128102.
[15] Abnormal phenomenon of source-drain current of AlGaN/GaN heterostructure device under UV/visible light irradiation
Yue-Bo Liu(柳月波), Jun-Yu Shen(沈俊宇), Jie-Ying Xing(邢洁莹), Wan-Qing Yao(姚婉青), Hong-Hui Liu(刘红辉), Ya-Qiong Dai(戴雅琼), Long-Kun Yang(杨隆坤), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(11): 117302.
No Suggested Reading articles found!