Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 030304    DOI: 10.1088/1674-1056/ad0ccb
GENERAL Prev   Next  

Dilation, discrimination and Uhlmann's theorem of link products of quantum channels

Qiang Lei(雷强)1, Liuheng Cao(操刘桁)1, Asutosh Kumar2,‡, and Junde Wu(武俊德)3,†
1 School of Mathematical Sciences, Harbin Institute of Technology, Harbin 150001, China;
2 Department of Physics, Gaya College, Magadh University, Rampur, Gaya 823001, India;
3 School of Mathematical Sciences, Zhejiang University, Hangzhou 310027, China
Abstract  We establish the Stinespring dilation theorem of the link product of quantum channels in two different ways, discuss the discrimination of quantum channels, and show that the distinguishability can be improved by self-linking each quantum channel n times as n grows. We also find that the maximum value of Uhlmann's theorem can be achieved for diagonal channels.
Keywords:  quantum channels      link products      Stinespring dilation theorem      Uhlmann's theorem  
Received:  22 September 2023      Revised:  10 November 2023      Accepted manuscript online:  16 November 2023
PACS:  03.65.Db (Functional analytical methods)  
  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61877054, 12031004, and 12271474).
Corresponding Authors:  Junde Wu, Asutosh Kumar     E-mail:  wjd@zju.edu.cn;asutoshk.phys@gmail.com

Cite this article: 

Qiang Lei(雷强), Liuheng Cao(操刘桁), Asutosh Kumar, and Junde Wu(武俊德) Dilation, discrimination and Uhlmann's theorem of link products of quantum channels 2024 Chin. Phys. B 33 030304

[1] Stinespring W F 1955 Proc. Am. Math. Soc. 6 211
[2] Kretschmann D, Schlingemann D and Werner R F 2008 J. Funct. Anal. 255 1889
[3] Jabbour M G and Cerf N J 2019 J. Phys. A: Math. Theor. 52 105302
[4] Shirokov M E 2020 J. Math. Phys. 61 082204
[5] Raginsky M 2001 Phys. Lett. A 290 11
[6] Chiribella G, D'Ariano G M and Perinotti P 2008 Phys. Rev. Lett. 101 180501
[7] Jencova A 2014 J. Math. Phys. 55 022201
[8] Jencova A and Plavala M 2016 J. Math. Phys. 57 122203
[9] Caiaffa M and Piani M 2018 Phy. Rev. A 97 032334
[10] Wilde M M 2020 IEEE International Symposium on Information Theory, June 21-26, 2020, Los Angeles, CA, USA, pp. 1915-1920
[11] Kardashin A S, Vlasova A V, Pervishko A A, Yudin D and Biamonte J D 2022 Phys. Rev. A 106 032409
[12] Kumar A, Roy S S, Pal A K, Prabhu R, De A S and Sen U 2016 Phys. Lett. A 380 3588
[13] Chiribella G, D'Ariano G M and Perinotti P 2009 Phy. Rev. A 80 022339
[14] Chiribella G, D'Ariano G M and Perinotti P 2008 Phys. Rev. Lett. 101 180504
[15] Chiribella G, D'Ariano G M and Perinotti P 2008 Phys. Rev. Lett. 101 060401
[16] Bisio A, Chiribella G, D'Ariano G M, Facchini S and Perinotti P 2009 Phys. Rev. Lett. 102 010404
[17] Bisio A, Chiribella G, D'Ariano G M, Facchini S and Perinotti P 2011 Acta Phys. Slovaca 61 273
[18] Xiao Y L, Yang Y X, Wang X M, Liu Q and Gu M L 2023 Phys. Rev. Lett. 130 240201
[19] Watrous J 2018 The theory of quantum information (Cambridge: Cambridge University Press) p. 1
[20] Chiribella G, D'Ariano G M and Perinotti P 2009 J. Math. Phys. 50 042101
[21] Sergeev I 2019 Rep. Math. Phys. 83 349
[22] Arab A R 2021 Rep. Math. Phys. 88 59
[23] King C 2003 IEEE Trans. Inform. Theory 49 221
[24] Amosov G G Probl 2006 Problems Inform. Transmission 42 69
[25] Datta N, Holevo A and Suhov Y 2006 Int. J. Quantum. Inf. 4 85
[26] Mendl C B and Wolf M M 2009 Commun. Math. Phys. 289 1057
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
No Suggested Reading articles found!