Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 060303    DOI: 10.1088/1674-1056/22/6/060303
GENERAL Prev   Next  

The Yukawa potential in semirelativistic formulation via supersymmetry quantum mechanics

S. Hassanabadia, M. Ghominejada, S. Zarrinkamarb, H. Hassanabadic
a Physics Department, Semnan University, Semnan, Iran;
b Department of Basic Sciences, Garmsar Branch, Islamic Azad University, Garmsar, Iran;
c Department of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran
Abstract  We apply an approximation to the centrifugal term and solve the two-body spinless-Salpeter equation (SSE) with the Yukawa potential via the supersymmetric quantum mechanics (SUSYQM) for arbitrary quantum numbers. Useful figures and tables are also included.
Keywords:  spinless-Salpeter equation      two-body-system      supersymmetry quantum mechanics      Yukawa potential  
Received:  16 August 2012      Revised:  30 October 2012      Accepted manuscript online: 
PACS:  03.65.Ca (Formalism)  
  03.65.Pm (Relativistic wave equations)  
  03.65.Nk (Scattering theory)  
Corresponding Authors:  H. Hassanabadi     E-mail:  h.hasanabadi@shahroodut.ac.ir

Cite this article: 

S. Hassanabadi, M. Ghominejad, S. Zarrinkamar, H. Hassanabadi The Yukawa potential in semirelativistic formulation via supersymmetry quantum mechanics 2013 Chin. Phys. B 22 060303

[1] Salpeter E E and Bethe H A 1985 Phys. Rev. 84 1232
[2] Wick G C 1954 Phys. Rev. 96 1124
[3] Maris P and Roberts C D 2003 Int. J. Mod. Phys. E 12 297
[4] Chang L and Roberts C D 2009 Phys. Rev. Lett. 103 081601
[5] Maris P and Roberts C D 1997 Phys. Rev. C 56 3369
[6] Nakanishi N 1969 Prog. Theor. Phys. Suppl. 43 1
[7] LuchaW and Schoberl F F 1999 Int. J. Mod. Phys. A 14 2309
[8] LuchaW and Schoberl F F 1999 Fizika B 8 193
[9] LuchaW and Schoberl F F 2002 Int. J. Mod. Phys. A 17 2233
[10] LuchaW and Schoberl F F 1996 Phys. Rev. A 54 3790
[11] LuchaW and Schoberl F F 2000 Int. J. Mod. Phys. A 15 3221
[12] LuchaW and Schoberl F F 1994 Phys. Rev. D 50 5443
[13] Perkins D H 2000 Introduction to High Energy Physics 4th edn. (Cambridge: Cambridge University Press)
[14] Luo X Q, Li Y Y and Helmut Kroger 2005 Sci. China G 35 631
[15] Kar S and Ho Y K 2007 Phys. Rev. A 75 062509
[16] Messina P and Lowen H 2003 Phys. Rev. Lett. 91 146101
[17] Zarrinkamar S and Rajabi A A 2011 Phys. Scr. 84 065008
[18] Hassanabadi S, Rajabi A A and Zarrinkamar S 2012 Mod. Phys. Lett. A 27 1250057
[19] Greene R L and Aldrich C 1976 Phys. Rev. A 14 2363
[20] Alhaidari A D 2010 Found. Phys. 40 1088
[21] Chen G and Chen Z D 2004 Phys. Lett. A 331 312
[22] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267
[23] Junker G 1996 Supersymmetric Methods in Quantum and Statistical Physics (Berlin: Springer-Verlag)
[24] Bagchi B 2000 Supersymmetry in Quantum and Classical Mechanics (New York: Chapman and Hall/CRC)
[1] The nonrelativistic oscillator strength of a hyperbolic-type potential
H. Hassanabadi, S. Zarrinkamar, B. H. Yazarloo. Chin. Phys. B, 2013, 22(6): 060202.
[2] Spinless particles in the field of unequal scalar–vector Yukawa potentials
M. Hamzavi, S. M. Ikhdair, K. E. Thylwe. Chin. Phys. B, 2013, 22(4): 040301.
[3] Dirac equation for the Hulthén potential within the Yukawa-type tensor interaction
Oktay Aydoğdu, Elham Maghsoodi, Hassan Hassanabadi. Chin. Phys. B, 2013, 22(1): 010302.
[4] Approximate solution of the spin-one Duffin-Kemmer-Petiau (DKP) equation under a non-minimal vector Yukawa potential in (1+1)-dimensions
H. Hassanabadi, Z. Molaee. Chin. Phys. B, 2012, 21(12): 120304.
[5] The rotating Morse potential energy eigenvalues solved by using the analytical transfer matrix method
He Ying (何英), Tao Qiu-Gong (陶求功), Yang Yan-Fang (杨艳芳). Chin. Phys. B, 2012, 21(10): 100303.
[6] Electron scattering from molecule CH4 at 10-5000eV
Liu Yu-Fang (刘玉芳), Zhu Zun-Lüe (朱遵略), Sun Jin-Feng (孙金锋), Cong Shu-Lin (丛书林), Han Ke-Li (韩克利). Chin. Phys. B, 2003, 12(7): 750-752.
No Suggested Reading articles found!