|
|
Cryo-EM combined with image deconvolution to determine ZIF-8 crystal structure |
Kang Wu(吴抗)1,2, Baisong Yang(杨柏松)2, Wenhua Xue(薛文华)2, Dapeng Sun(孙大鹏)2,†, Binghui Ge(葛炳辉)1,‡, and Yumei Wang(王玉梅)2,3,§ |
1 Information Materials and Intelligent Sensing Laboratory of Anhui Province, Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 Beijing Branch of Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract Metal-organic frameworks (MOFs) are crystalline porous materials with tunable properties, exhibiting great potential in gas adsorption, separation and catalysis.[1,2]It is challenging to visualize MOFs with transmission electron microscopy (TEM) due to their inherent instability under electron beam irradiation. Here, we employ cryo-electron microscopy (cryo-EM) to capture images of MOF ZIF-8, revealing inverted-space structural information at a resolution of up to about 1.7 Å and enhancing its critical electron dose to around 20 $e^-$/Å$^{2}$. In addition, it is confirmed by electron-beam irradiation experiments that the high voltage could effectively mitigate the radiolysis, and the structure of ZIF-8 is more stable along the [100] direction under electron beam irradiation. Meanwhile, since the high-resolution electron microscope images are modulated by contrast transfer function (CTF) and it is difficult to determine the positions corresponding to the atomic columns directly from the images. We employ image deconvolution to eliminate the impact of CTF and obtain the structural images of ZIF-8. As a result, the heavy atom Zn and the organic imidazole ring within the organic framework can be distinguished from structural images.
|
Received: 29 March 2024
Revised: 06 May 2024
Accepted manuscript online: 09 May 2024
|
PACS:
|
68.37.Og
|
(High-resolution transmission electron microscopy (HRTEM))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074409 and 12374021). |
Corresponding Authors:
Dapeng Sun, Binghui Ge, Yumei Wang
E-mail: 225sundapeng@iphy.ac.cn;bhge@ahu.edu.cn;wangym@iphy.ac.cn
|
Cite this article:
Kang Wu(吴抗), Baisong Yang(杨柏松), Wenhua Xue(薛文华), Dapeng Sun(孙大鹏), Binghui Ge(葛炳辉), and Yumei Wang(王玉梅) Cryo-EM combined with image deconvolution to determine ZIF-8 crystal structure 2024 Chin. Phys. B 33 076802
|
[1] Li H, Eddaoudi M, O’Keeffe M and Yaghi O 1999 Nature 402 276 [2] Furukawa H, Cordova K, O’Keeffe M and Yaghi O 2013 Science 341 974 [3] Venna S and Carreon M 2010 J. Am. Chem. Soc. 132 76 [4] Chen B, Yang Z, Zhu Y and Xia, Y 2014 J. Mater. Chem. A 2 16811 [5] Zhang K, Nalaparaju A, Chen Y and Jiang J 2014 Phys. Chem. Chem. Phys. 16 9643 [6] Hashimoto A, Suenaga K, Gloter A and Iijima S 2004 Nature 430 870 [7] Makiura R, Motoyama S, Umemura Y, Yamanaka H, Sakata O and Kitagawa H 2010 Nat. Mater. 9 565 [8] Zhu Y, Ciston J, Zheng B, Miao X, Czarnik C, Pan Y, Sougrat R, Lai Z, Hsiung C, Yao K, Pinnau I, Pan M and Han Y 2017 Nat. Mater. 16 532 [9] Chen Q, Dwyer C, Sheng G, Zhu C, Li X, Zheng C and Zhu Y 2020 Adv. Mater. 32 1907619 [10] Han X, Chen W, Su R, Tian Y, Liu P, Guan P, Luo M, Han J, Cao X, Pan M and Chen M 2021 Nanoscale 13 13215 [11] Li Y, Wang K, Zhou W, Li Y, Vila R, Huang W, Wang H, Chen G, Wu G, Tsao Y, Wang H, Sinclair R, Chiu W and Cui Y 2019 Matter 1 428 [12] Wiktor C, Turner S, Zacher D, Fischer R and Tendeloo G 2012 Micropor. Mesopor. Mater. 162 131 [13] Li X, Mooney P, Zheng S, Booth C, Braunfeld M, Gubbens S, Agard D and Cheng Y 2013 Nat. Methods 10 584 [14] Li Y, Li Y, Pei A, Yan K, Sun Y, Wu C, Joubert L, Chin R, Koh A, Yu Y, Perrino J, Butz B, Chu S and Cui Y 2017 Science 358 506 [15] Li Y, Zhou W, Li Y, Huang W, Zhang Z, Chen G, Wang H, Wu G, Rolston N, Vila R, Chiu W and Cui Y 2019 Joule 3 2854 [16] Zhu Y, Gui Z, Wang Q, Meng F, Feng S, Han B, Wang P, Huang L, Wang H and Gu M 2020 Nano Energy 73 104820 [17] Han B, Li X, Wang Q, Zou Y, Xu G, Cheng Y, Zhang Z, Zhao Y, Deng Y, Li J and Gu M 2022 Adv. Mater. 34 2108252 [18] Scherzer O 1949 J. Appl. Phys. 20 20 [19] Li F and Hashimoto H 1984 Acta Cryst. B 40 454 [20] O’keefe M 1973 Acta Cryst. A 29 389 [21] Coene W, Janssen G, Op de Beeck M and Van Dyck D 1992 Phys. Rev. Lett. 69 3743 [22] Op de Beeck M and Van Dyck D 1996 Ultramicroscopy 64 153 [23] Hu J and Li F 1991 Ultramicroscopy 35 339 [24] Huang D, He W and Li F 1996 Ultramicroscopy 62 141 [25] Wang H, Wang Y and Li F 2004 Ultramicroscopy 99 165 [26] Jiang H, Teng C, He W and Li F 1997 Microscopy 46 375 [27] Wang Y, Wang H, Li F, Jia L and Chen X 2005 Micron 36 393 [28] Yang S X and Li F H 2000 Ultramicroscopy 85 51 [29] Ghosh S, Kumar P, Conrad S, Tsapatsis M and Mkhoyan K 2019 Microsc. Microanal. 25 1704 [30] Williams D and Carter C 2009 The Transmission Electron Microscope (Boston: Springer) p. 65 [31] Zou X, Ferrow E A and Hovmöller S 1995 Phys. Chem. Miner. 22 517 [32] Zou X, Sundberg M, Larine M and Hovmöller S 1996 Ultramicroscopy 62 103 [33] Li F 2010 Phys. Status Solidi A 207 2639 [34] Gull S and Skilling J 1984 IEE Proceedings F 131 646 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|