Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(7): 076501    DOI: 10.1088/1674-1056/ad342f
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Evolution of helium bubbles in FeCoNiCr-based high-entropy alloys containing $ \gamma '$ nanoprecipitates

Ting Feng(冯婷), Sheng-Ming Jiang(蒋胜明), Xiao-Tian Hu(胡潇天), Zi-Jun Zhang(张子骏), Zi-Jing Huang(黄子敬), Shi-Gang Dong(董士刚), and Jian Zhang(张建)†
College of Energy, Xiamen University, Xiamen 361005, China
Abstract  A series of high-entropy alloys (HEAs) containing nanoprecipitates of varying sizes is successfully prepared by a non-consuming vacuum arc melting method. In order to study the irradiation evolution of helium bubbles in the FeCoNiCr-based HEAs with $\gamma'$ precipitates, these samples are irradiated by 100-keV helium ions with a fluence of 5$\times10^{20 }$ ions/m$^{2}$ at 293 K and 673 K, respectively. And the samples irradiated at room temperature are annealed at different temperatures to examine the diffusion behavior of helium bubbles. Transmission electron microscope (TEM) is employed to characterize the structural morphology of precipitated nanoparticles and the evolution of helium bubbles. Experimental results reveal that nanosized, spherical, dispersed, coherent, and ordered L1$_{2}$-type Ni$_{3}$Ti $\gamma'$ precipitations are introduced into FeCoNiCr(Ni$_{3}$Ti)$_{0.1}$ HEAs by means of ageing treatments at temperatures between 1073 K and 1123 K. Under the ageing treatment conditions adopted in this work, $\gamma'$ nanoparticles are precipitated in FeCoNiCr(Ni$_{3}$Ti)$_{0.1}$ HEAs, with average diameters of 15.80 nm, 37.09 nm, and 62.50 nm, respectively. The average sizes of helium bubbles observed in samples after 673-K irradiation are 1.46 nm, 1.65 nm, and 1.58 nm, respectively. The improvement in the irradiation resistance of FeCoNiCr(Ni$_{3}$Ti)$_{0.1}$ HEAs is evidenced by the diminution in bubbles size. Furthermore, the FeCoNiCr(Ni$_{3}$Ti)$_{0.1}$ HEAs containing $\gamma'$ precipitates of 15.8 nm exhibits the minimum size and density of helium bubbles, which can be ascribed to the considerable helium trapping effects of heterogeneous coherent phase boundaries. Subsequently, annealing experiments conducted after 293-K irradiation indicate that HEAs containing precipitated phases exhibits smaller apparent activation energy ($E_{\rm a}$) for helium bubbles, resulting in larger helium bubble size. This study provides guidance for improving the irradiation resistance of L1$_{2}$-strengthened high-entropy alloy.
Keywords:  high-entropy alloys      irradiation resistance      coherent precipitates      helium bubbles  
Received:  23 January 2024      Revised:  08 March 2024      Accepted manuscript online:  15 March 2024
PACS:  65.40.gd (Entropy)  
  61.80.Lj (Atom and molecule irradiation effects)  
  47.27.De (Coherent structures)  
  61.66.Dk (Alloys )  
Fund: Project support provided by the National Natural Science Foundation of China (Grant No. 12075200) and the National Key Research and Development Program of China (Grant No. 2022YFB3706004).
Corresponding Authors:  Jian Zhang     E-mail:  zhangjian@xmu.edu.cn

Cite this article: 

Ting Feng(冯婷), Sheng-Ming Jiang(蒋胜明), Xiao-Tian Hu(胡潇天), Zi-Jun Zhang(张子骏), Zi-Jing Huang(黄子敬), Shi-Gang Dong(董士刚), and Jian Zhang(张建) Evolution of helium bubbles in FeCoNiCr-based high-entropy alloys containing $ \gamma '$ nanoprecipitates 2024 Chin. Phys. B 33 076501

[1] Zinkle S J and Was G S 2013 Acta Materialia 61 735
[2] Zinkle S J, Terrani K A and Snead L L 2016 Current Opinion in Solid State & Materials Science 20 401
[3] Zinkle S J and Busby J T 2009 Mater. Today 12 12
[4] Barr C M, et al. 2014 Acta Materialia 67 145
[5] Kumar N, Li C, Leonard K J, Bei H and Zinkle S J 2016 Acta Materialia 113 230
[6] Kumar N, et al. 2016 Acta Materialia 113 230
[7] Li S H, Li J T and Han W Z 2019 Materials 12 071036
[8] Chen D, Zhao S J, Sun J R, Tai P F, Sheng Y B, Zhao Y L, Yeli G, Lin W T, Liu S F, Kai W and Kai J J 2019 J. Nucl. Mater. 526 151747
[9] Cheng T, Wei G, Jiang S M, Zhang J, Wang Y Q, Liu P, Hong M Q, Guo E K, Zhong F, Cai G X, Jiang C Z and Ren F 2023 Acta Materialia 248 118765
[10] Tsai M H and Yeh J W 2014 Mater. Res. Lett. 2 107
[11] Miracle D B and Senkov O N 2017 Acta Materialia 122 448
[12] Cantor B 2014 Entropy 16 4749
[13] George E P, Raabe D and Ritchie R O 2019 Nat. Rev. Mater. 4 515
[14] Lu C Y, Niu L L, Chen N J, Jin K, Yang T N, Xiu P Y, Zhang Y W, Gao F, Bei H B, Shi S, He M R, Robertson I M, Weber W J and Wang L M 2016 Nat. Commun 7 13564
[15] Zhang Y 2023 High-Entropy Materials: Advances and Applications (Boca Raton: CRC Press)
[16] Ming K S, Bi X F and Wang J 2018 Int. J. Plasticity 100 177
[17] Ahlgren T and Bukonte L 2017 J. Nucl. Mater. 496 66
[18] Vattré A, Jourdan T, Ding H, Marinica M C and Demkowicz M J 2016 Nat. Commun. 7 10424
[19] Zheng Y, Lu W, Qian F, Jia N, Dou Y, He X, Yang W, Wang J, Xue Y and Jin K 2021 J. Nucl. Mater. 549 152889
[20] Zhao S J and Osetsky Y 2021 Acta Materialia 207 116704
[21] Kalita D, Józwik I, Kurpaska L, Zhang Y, Mulewska K, Chrominski W, O’Connell J, Ge Y, Boldman W L, Rack P D, Wang Y, Weber W J and Jagielski J 2023 Nucl. Mater. Energy 37 101513
[22] Shen S K, Hao L Y, Liu X, Wang Y F, Li Y X, Zhang J and Fu E G 2023 Acta Materialia 261 119404
[23] Wang K, Yan Y G, Xiong Y X, Zhao S J, Chen D and Woller K B 2024 J. Nucl. Mater. 588 154761
[24] Lin W T, et al. 2022 J. Mater. Sci. Technol. 101 226
[25] Chen D, Zhao S J, Sun J R, Tai P F, Sheng Y B, Yeli G, Zhao Y L, Liu S F, Lin W T, Kai W and Kai J J 2020 J. Nucl. Mater. 542 152458
[26] Chen Y X, et al. 2015 J. Mater. Res. 30 1300
[27] Fu E G, et al. 2010 J. Nucl. Mater. 407 178
[28] Cao P P, Wang H, He J Y, Xu C, Jiang S H, Du J L, Cao X Z, Fu E G and Lu Z P 2021 J. Alloys Compd. 859 158291
[29] Zhaoa Y L, et al. 2023 J. Mater. Sci. Technol. 143 169
[30] Tang B, et al. 2014 Mater. Trans. 55 410
[31] Yao B, et al. 2012 J. Electron Microscopy 61 393
[32] Yen S Y, Murakami H and Lin S K 2023 J. Alloys Compd. 952 170027
[33] He H H, Lin Z W, Jiang S M, Hu X T, Zhang J and Huang Z J 2021 Materials 14 3727
[34] Zhu R, Zhou Q, Shi L, et al. 2021 Chin. Phys. B 30 086102
[35] Trinkaus H and Singh B N 2003 J. Nucl. Mater. 323 229
[36] Harrison R W, Greaves G, Le H, Bei H, Zhang Y and Donnelly S E 2019 Current Opinion in Solid State & Mater. Sci. 23 100762
[37] Chernikov V N, Trinkaus H and Ullmaier H 1997 J. Nucl. Mater. 250 103
[38] Fu C C and Willaime F 2005 Phys. Rev. B 72 064117
[39] Ortiz C J, Caturla M J, Fu C C and Willaime F 2007 Phys. Rev. B 75 100102
[40] Tong Y, et al. 2019 Acta Materialia 165 228
[41] Parkin C, Chen W Y, Li M M, Sridharan K and Couet A 2024 J. Nucl. Mater. 589 154827
[42] Wang Q Q, Kong X G, Yu Y, Xin T Y, Pan R J and Wu L 2023 J. Nucl. Mater. 587 154706
[43]
[43] Wang Y B, Li S Y, Chen F D, Yang K, Ge G J, Tang X B, Fan M Y and Huang P 2023 J. Alloys Compd. 958 170373
[44] Bergstrom Z J, Perez D and Martinez E 2021 J. Nucl. Mater. 557 153306
[45] Jelea A 2018 Nucl. Instrum. Methods Phys. Res. B 425 50
[46] Schaldach C M and Wolfer W G 2002 Kinetics of helium bubble formation in nuclear and structural materials, in 21st Int. Symposium on Effects of Radiation on Materials 2002, Tucson, AZ 1447 479
[47] Hsiung L L, Fluss M J, Tumey S J, Choi B W, Serruys Y, Willaime F and Kimura A 2010 Phys. Rev. B 82 184103
[48] Schäublin R, et al. 2006 J. Nucl. Mater. 351 247
[49] Ukai S and Fujiwara M 2002 J. Nucl. Mater. 307 749
[50] Gao X F, Liu T, Zhang X F, Fang H Z, Qin G and Chen R R 2022 J. Alloys Compd. 918 165584
[51] Jiang K, Ren T F, Shan G B, Ye T, Chen L Y, Wang C X, Zhao F, Li J G and Suo T 2020 Mater. Sci. Eng. A 797 140125
[52] Lu W J, et al. 2020 Acta Materialia 185 218
[53] Yang W F, Pang J Y, Zheng S J, Wang J, Zhang X H and Ma X L 2019 Materials 12 2639
[54] Pu G, Lin L W, Ren D, Gan K F, Liu B, Ye Z B, Wang Y H, Zhang K, Li Z M and Liu B 2022 J. Nucl. Mater. 566 153734
[55] Shun T T, Hung C H and Lee C F 2010 J. Alloys Compd. 493 105
[56] Liu L Y, Zhang Y, Han J H, Wang X Y, Jiang W Q, Liu C T, Zhang Z W and Liaw P K 2021 Adv. Sci. 8 2100870
[57] Zhang H Z, Zhu Z B, Huang H F, He T, Yan H W, Zhang Y A, Lu Y P, Wang T M and Li T N G 2023 Intermetallics 157 107873
[58] Wang Y F, Chen H Q, Sun B R, Li X W, Meng Q N, Wu Z F, Hao L Y, Du J L, Liu X, Shen T D, Zhang J, Li J and Fu E G 2023 Mater. Today Commun. 36 106897
[59] Wang Y Z and Wang Y J 2022 Acta Materialia 224 117527
[60] Zell V, Schroeder H and Trinkaus H 1994 J. Nucl. Mater. 212 358
[61] Jublot-Leclerc S, et al. 2015 J. Nucl. Mater. 466 646
[62] Fu C L, Li J J, Bai J J, Lei Q T, Liu R D and Lin J 2022 J. Nucl. Mater. 562 153609
[63] Sun G A, et al. 2014 Thin Solid Films 558 125
[64] Yan Z F, et al. 2018 J. Nucl. Mater. 505 200
[1] High-entropy alloys in thermoelectric application: A selective review
Kai Ren(任凯), Wenyi Huo(霍文燚), Shuai Chen(陈帅), Yuan Cheng(程渊), Biao Wang(王彪), and Gang Zhang(张刚). Chin. Phys. B, 2024, 33(5): 057202.
[2] Atomistic evaluation of tension—compression asymmetry in nanoscale body-centered-cubic AlCrFeCoNi high-entropy alloy
Runlong Xing(邢润龙) and Xuepeng Liu(刘雪鹏). Chin. Phys. B, 2024, 33(1): 016202.
[3] In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing
Yi-Peng Li(李奕鹏), Guang Ran(冉广), Xin-Yi Liu(刘歆翌), Xi Qiu(邱玺), Qing Han(韩晴), Wen-Jie Li(李文杰), and Yi-Jia Guo(郭熠佳). Chin. Phys. B, 2021, 30(8): 086109.
[4] Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys
Shijun Zhao(赵仕俊). Chin. Phys. B, 2021, 30(5): 056111.
[5] Amorphous phase formation rules in high-entropy alloys
Qiu-Wei Xing(邢秋玮), Yong Zhang(张勇). Chin. Phys. B, 2017, 26(1): 018104.
No Suggested Reading articles found!