Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(10): 100301    DOI: 10.1088/1674-1056/23/10/100301
GENERAL Prev   Next  

Transmission time in the reflectionless complex potential

Yin Cheng (殷澄)a, Wang Xian-Ping (王贤平)b, Shan Ming-Lei (单鸣雷)a, Han Qing-Bang (韩庆邦)a, Zhu Chang-Ping (朱昌平)a
a Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology, Hohai University, Changzhou 213022, China;
b School of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China
Abstract  A phase time definition directly obtained from the Schrödinger equation is used to investigate the time delay of a particle scattered by complex reflectionless potential. The artifacts introduced by truncating in the numerical simulation are clarified. The time delay of the transmitted wave packet is found to be equal to the reflection time of the truncated potential. Both time delays are the same as the traversal time in the free space, but shorter than the time taken by a classical particle to pass the same potential.
Keywords:  complex reflectionless potentials      transmission time      supersymmetric quantum mechanics  
Received:  15 January 2014      Revised:  16 April 2014      Accepted manuscript online: 
PACS:  03.65.Ca (Formalism)  
  03.65.Xp (Tunneling, traversal time, quantum Zeno dynamics)  
  03.75.Be (Atom and neutron optics)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities of Hohai University, China (Grant No. 2012B04114) and the National Natural Science Foundation of China (Grant Nos. 10974044 and 11274091).
Corresponding Authors:  Han Qing-Bang     E-mail:  hqb0092@163.com
About author:  03.65.Ca; 03.65.Xp; 03.75.Be

Cite this article: 

Yin Cheng (殷澄), Wang Xian-Ping (王贤平), Shan Ming-Lei (单鸣雷), Han Qing-Bang (韩庆邦), Zhu Chang-Ping (朱昌平) Transmission time in the reflectionless complex potential 2014 Chin. Phys. B 23 100301

[2]Broughton J Q, Abraham F F, Bernstein N and Kaxiras E 1999 Phys. Rev. B 60 2391
[1]Sukhorukov A 2010 Opt. Lett. 35 989
[3]Lidorikis E, Bachlechner M E, Kalia R K, Nakano A and Vashishta P 2001 Phys. Rev. Lett. 87 86104
[2]Correa F, Jakubský V and Plyushchay M 2009 Ann. Phys. 324 1078
[4]Tadmor E B, Ortiz M and Phillips R 1996 Phil. Mag. A 73 1529
[5]Shao Y F, Yang X, Zhao X and Wang S Q 2012 Chin. Phys. B 21 093104
[3]Berenger J 1994 J. Comput. Phys. 114 185
[6]Dupuy L M, Tadmor E B, Miller R E and Phillips R 2005 Phys. Rev. Lett. 95 060202
[4]Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267
[7]Rudd R E and Broughton J Q 1998 Phys. Rev. B 58 R5893
[5]Koller A and Olshanii M 2011 Phys. Rev. E 84 066601
[8]Rudd R E and Broughton J Q 2005 Phys. Rev. B 72 144104
[9]Wanger G J and Liu W K 2003 J. Comp. Phys. 190 249
[6]Park C 2011 Phys. Lett. A 375 3348
[10]Xu M, Gracie R and Belytschko T 2010 Int. J. Numer. Meth. Engng. 81 1635
[11]Shilkrot L E, Miller R E and Curtin W A 2002 Phys. Rev. Lett. 89 025501
[7]Yin C, Cao Z and Shen Q 2010 Ann. Phys. 325 528
[8]Szameit A, Dreisow F, Heinrich M, Nolte S and Sukhorukov A 2011 Phys. Rev. Lett. 106 193903
[12]Warner D H, Curtin W A and Qu S 2007 Nat. Mater. 6 876
[13]Hara S, Kumagai T, Izumi S and Sakai S 2009 Acta. Mater. 57 4209
[9]Ahmed Z 2001 Phys. Lett. A 282 343
[14]Luan B Q, Hyun S, Molinari J F, Bernstein N and Robbins M O 2006 Phys. Rev. B 74 46710
[10]Muga J, Palao J, Navarro B and Egusquiza I 2004 Phys. Rep. 395 357
[11]Pandya S, Vaishnav B and Joshipura K 2012 Chin. Phys. B 21 093402
[15]Bazant Z P 1978 Comput. Method. Appl. Mech. Engrg. 16 91
[12]Winful H 2006 Phys. Rep. 436 1
[16]Zhou S J, Lomdahl P S, Thomson R and Holian B L 1996 Phys. Rev. Lett. 76 2318
[13]Steinberg A and Chiao R 1994 Phys. Rev. A 49 3283
[14]Zhou G 1993 Acta Phys. Sin. 42 173 (in Chinese)
[15]Yuan W, Yin C, Wang X and Cao Z 2010 Chin. Phys. B 19 093402
[17]Qu S, Shastry V, Curtin W A and Miller R E 2005 Modell. Simul. Mater. Sci. Eng. 13 1101
[16]Yin. C, Wu. Z, Wang X, Sun J and Cao Z 2010 Chin. Phys. B 19 117305
[18]Doll J D, Myers L E and Adelman S A 1975 J. Chem. Phys. 63 4908
[17]Hai W, Rong S and Zhu Q 2008 Phys. Rev. E 78 066214
[1] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[2] Approximate solutions of Klein—Gordon equation with improved Manning—Rosen potential in D-dimensions using SUSYQM
A. N. Ikot, H. Hassanabadi, H. P. Obong, Y. E. Chad Umoren, C. N. Isonguyo, B. H. Yazarloo. Chin. Phys. B, 2014, 23(12): 120303.
[3] Solve the spin-weighted spheroidal wave equation
Li Yu-Zhen (李玉祯), Tian Gui-Hua (田贵花), Dong Kun (董锟). Chin. Phys. B, 2013, 22(6): 060203.
[4] Analytic solutions of the ground and excited states of the spin-weighted spheroidal equation in the case of s=2
Sun Yue(孙越), Tian Gui-Hua(田贵花), and Dong Kun(董锟) . Chin. Phys. B, 2012, 21(4): 040401.
[5] Verification of the spin-weighted spheroidal equation in the case of s=1
Zhang Qing(张晴), Tian Gui-Hua(田贵花), Sun Yue(孙越), and Dong Kun(董锟) . Chin. Phys. B, 2012, 21(4): 040402.
[6] Low frequency asymptotics for the spin-weighted spheroidal equation in the case of s=1/2
Dong Kun(董锟), Tian Gui-Hua(田贵花), and Sun Yue(孙越). Chin. Phys. B, 2011, 20(7): 071101.
[7] Spin-weighted spheroidal equation in the case of s=1
Sun Yue(孙越), Tian Gui-Hua(田贵花), and Dong Kun(董锟). Chin. Phys. B, 2011, 20(6): 061101.
[8] Ground eigenvalue and eigenfunction of a spin-weighted spheroidal wave equation in low frequencies
Tang Wen-Lin (唐文林), Tian Gui-Hua (田贵花). Chin. Phys. B, 2011, 20(5): 050301.
[9] Generation and classification of the translational shape-invariant potentials based on the analytical transfer matrix method
Sang Ming-Huang(桑明煌), Yu Zi-Xing(余子星), Li Cui-Cui(李翠翠), and Tu Kai(涂凯) . Chin. Phys. B, 2011, 20(12): 120304.
[10] Solving ground eigenvalue and eigenfunction of spheroidal wave equation at low frequency by supersymmetric quantum mechanics method
Tang Wen-Lin(唐文林) and Tian Gui-Hua(田贵花). Chin. Phys. B, 2011, 20(1): 010304.
[11] Bound states of the Klein-Gordon and Dirac equation for scalar and vector pseudoharmonic oscillator potentials
Chen Gang (陈刚), Chen Zi-Dong (陈子栋), Lou Zhi-Mei (楼智美). Chin. Phys. B, 2004, 13(3): 279-282.
[12] NEW EXACTLY SOLVABLE SUPERSYMMETRIC PERIODIC POTENTIALS
Liu Ke-jia (刘克家), He Li (何力), Zhou Guo-li (周国利), Wu Yu-jiao (伍玉娇). Chin. Phys. B, 2001, 10(12): 1110-1112.
No Suggested Reading articles found!