Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 060203    DOI: 10.1088/1674-1056/22/6/060203
GENERAL Prev   Next  

Solve the spin-weighted spheroidal wave equation

Li Yu-Zhen (李玉祯), Tian Gui-Hua (田贵花), Dong Kun (董锟)
School of Sciences, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  In this paper we solve spin-weighted spheroidal wave equations through super-symmetric quantum mechanics with a different expression of the super-potential. We use the shape invariance property to compute the "excited" eigenvalues and eigenfunctions. The results are beneficial to researchers for understanding the properties of the spin-weighted spheroidal wave more deeply, especially its integrability.
Keywords:  spin-weighted spherical wave equation      supersymmetric quantum mechanics      shape invariance      recurrence relation  
Received:  16 October 2012      Revised:  15 December 2012      Accepted manuscript online: 
PACS:  02.30.Gp (Special functions)  
  03.65.Ge (Solutions of wave equations: bound states)  
  11.30.Pb (Supersymmetry)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10875018).
Corresponding Authors:  Li Yu-Zhen, Tian Gui-Hua, Dong Kun     E-mail:  taijichen1@126.com; hua2007@126.com; woailiuyanbin1@126.com

Cite this article: 

Li Yu-Zhen (李玉祯), Tian Gui-Hua (田贵花), Dong Kun (董锟) Solve the spin-weighted spheroidal wave equation 2013 Chin. Phys. B 22 060203

[1] Teukolsky S A 1972 Phys. Rev. Lett. 29 1114
[2] Teukolsky S A 1973 Astrophys. J. 185 635
[3] Leaver E 1986 J. Math. Phys. 27 1238
[4] Tian G H 2005 Chin. Phys. Lett. 22 3013
[5] Infeld L and Hull T E 1951 Rev. Mod. Phys. 23 21
[6] Tian G H 2010 Chin. Phys. Lett. 27 030308
[7] Tian G H and Zhong S Q 2010 Chin. Phys. Lett. 27 040305
[8] Tian G H and Li Z Y 2011 Sci. China G 54 1775
[9] Dong K, Tian G H and Sun Y 2011 Chin. Phys. B 20 071101
[10] Tang W L and Tian G H 2011 Chin. Phys. B 20 050301
[11] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 268
[1] Pseudospin symmetric solutions of the Dirac equation with the modified Rosen—Morse potential using Nikiforov—Uvarov method and supersymmetric quantum mechanics approach
Wen-Li Chen(陈文利) and I B Okon. Chin. Phys. B, 2022, 31(5): 050302.
[2] Approximate solutions of Klein—Gordon equation with improved Manning—Rosen potential in D-dimensions using SUSYQM
A. N. Ikot, H. Hassanabadi, H. P. Obong, Y. E. Chad Umoren, C. N. Isonguyo, B. H. Yazarloo. Chin. Phys. B, 2014, 23(12): 120303.
[3] Transmission time in the reflectionless complex potential
Yin Cheng (殷澄), Wang Xian-Ping (王贤平), Shan Ming-Lei (单鸣雷), Han Qing-Bang (韩庆邦), Zhu Chang-Ping (朱昌平). Chin. Phys. B, 2014, 23(10): 100301.
[4] Dynamics of one-dimensional random quantum XY system with Dzyaloshinskii–Moriya interaction
Li Yin-Fang (李银芳), Kong Xiang-Mu (孔祥木). Chin. Phys. B, 2013, 22(3): 037502.
[5] Analytic solutions of the ground and excited states of the spin-weighted spheroidal equation in the case of s=2
Sun Yue(孙越), Tian Gui-Hua(田贵花), and Dong Kun(董锟) . Chin. Phys. B, 2012, 21(4): 040401.
[6] Verification of the spin-weighted spheroidal equation in the case of s=1
Zhang Qing(张晴), Tian Gui-Hua(田贵花), Sun Yue(孙越), and Dong Kun(董锟) . Chin. Phys. B, 2012, 21(4): 040402.
[7] Low frequency asymptotics for the spin-weighted spheroidal equation in the case of s=1/2
Dong Kun(董锟), Tian Gui-Hua(田贵花), and Sun Yue(孙越). Chin. Phys. B, 2011, 20(7): 071101.
[8] Spin-weighted spheroidal equation in the case of s=1
Sun Yue(孙越), Tian Gui-Hua(田贵花), and Dong Kun(董锟). Chin. Phys. B, 2011, 20(6): 061101.
[9] Ground eigenvalue and eigenfunction of a spin-weighted spheroidal wave equation in low frequencies
Tang Wen-Lin (唐文林), Tian Gui-Hua (田贵花). Chin. Phys. B, 2011, 20(5): 050301.
[10] Generation and classification of the translational shape-invariant potentials based on the analytical transfer matrix method
Sang Ming-Huang(桑明煌), Yu Zi-Xing(余子星), Li Cui-Cui(李翠翠), and Tu Kai(涂凯) . Chin. Phys. B, 2011, 20(12): 120304.
[11] Solving ground eigenvalue and eigenfunction of spheroidal wave equation at low frequency by supersymmetric quantum mechanics method
Tang Wen-Lin(唐文林) and Tian Gui-Hua(田贵花). Chin. Phys. B, 2011, 20(1): 010304.
[12] Bound states of the Schrödinger equation for the Pöschl–Teller double-ring-shaped Coulomb potential
Lu Fa-Lin(陆法林) and Chen Chang-Yuan(陈昌远). Chin. Phys. B, 2010, 19(10): 100309.
[13] Bound states of Klein—Gordon equation for double ring-shaped oscillator scalar and vector potentials
Lu Fa-Lin (陆法林), Chen Chang-Yuan (陈昌远), Sun Dong-Sheng (孙东升). Chin. Phys. B, 2005, 14(3): 463-467.
[14] Analytical formulae and recurrence relations of bound-continuous transition matrix element for Coulomb wavefunctions
Chen Chang-Yuan (陈昌远), Sun Dong-Sheng (孙东升), Lu Fa-Lin (陆法林). Chin. Phys. B, 2005, 14(1): 37-41.
[15] Bound states of the Klein-Gordon and Dirac equation for scalar and vector pseudoharmonic oscillator potentials
Chen Gang (陈刚), Chen Zi-Dong (陈子栋), Lou Zhi-Mei (楼智美). Chin. Phys. B, 2004, 13(3): 279-282.
No Suggested Reading articles found!