|
|
The nonrelativistic oscillator strength of a hyperbolic-type potential |
H. Hassanabadia, S. Zarrinkamarb, B. H. Yazarlooa |
a Department of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran; b Department of Basic Sciences, Garmsar Branch, Islamic Azad University, Garmsar, Iran |
|
|
Abstract We consider the D-dimensional Schrödinger equation under the hyperbolic potential V0 (1-coth (αr)) +V1 (1-coth (αr))2. Using a Pekeris-type approximation, the approximate analytical solutions of the problem are obtained via the supersymmetric quantum mechanics. The behaviors of energy eigenvalues versus dimension are discussed for various quantum numbers. Useful expectation values as well as the oscillator strength are obtained.
|
Received: 09 September 2012
Revised: 14 November 2012
Accepted manuscript online:
|
PACS:
|
02.30.Gp
|
(Special functions)
|
|
03.65.-w
|
(Quantum mechanics)
|
|
03.65.Ge
|
(Solutions of wave equations: bound states)
|
|
34.20.Cf
|
(Interatomic potentials and forces)
|
|
Corresponding Authors:
B. H. Yazarloo
E-mail: hoda.yazarloo@gmail.com
|
Cite this article:
H. Hassanabadi, S. Zarrinkamar, B. H. Yazarloo The nonrelativistic oscillator strength of a hyperbolic-type potential 2013 Chin. Phys. B 22 060202
|
[1] |
Dong S H 2002 Phys. Scr. 65 289
|
[2] |
Qiang W C and Dong S H 2005 Phys. Scr. 72 127
|
[3] |
Dong S H and Ma Z Q 2002 Phys. Rev. A 65 042717
|
[4] |
Qiang W C and Dong S H 2008 Phys. Lett. A 372 4789
|
[5] |
Gu X Y and Dong S H 2011 J. Math. Chem. 49 2053
|
[6] |
Hassanabadi H, Yazarloo B H, Zarrinkamar S and Rahimov H 2012 Commun. Theor. Phys. 57 339
|
[7] |
Dong S H, Lozada-Cassou M, Yu J, Jimenez-Angeles F and Rivera A L 2007 Int. J. Quantum Chem. 107 366
|
[8] |
Dong S H, Chen C Y and Cassou M L 2005 J. Phys. B 38 2211
|
[9] |
Dong S H, Sun G H and Cassou M L 2005 Int. J. Quantum Chem. 102 147
|
[10] |
Chen G 2004 Phys. Scr. 69 257
|
[11] |
Wei G F, Sun G H and Dong S H 2012 Appl. Math. Comput. 218 11171
|
[12] |
Dong S H and Cassou M L 2004 Int. J. Mod. Phys. E 13 917
|
[13] |
Wei G F and Dong S H 2011 Can. J. Phys. 89 1225
|
[14] |
Dong S H and Gonzalez-Cisneros A 2008 Ann. Phys. 323 1136
|
[15] |
Ma Z Q, Dong S H, Gu X Y and Lozada-Cassou M 2004 Int. J. Mod. Phys. E 13 597
|
[16] |
Dong S H, Sun G H and Popov D 2003 J. Math. Phys. 44 4467
|
[17] |
Gu X Y, Ma Z Q and Dong S H 2003 Phys. Rev. A 67 062715
|
[18] |
Yu J, Dong S H and Sun G H 2004 Phys. Lett. A 322 290
|
[19] |
Hassanabadi S, Rajabi A A, Yazarloo B H, Zarrinkamar S and Hassanabadi H 2012 Advances in High Energy Physics, Volume 2012, Article ID 804652
|
[20] |
Hassanabadi H, Rahimov H and Zarrinkamar S 2012 Advances in High Energy Physics Volume 2011, Article ID 458087
|
[21] |
Walz M, Neu R, Staudt G, Oberhummer H and Cech H 1988 J. Phys. G: Nucl. Part. Phys. 14 L91
|
[22] |
Garcia F, Garrote E, Yoneama M L, Arruda-Neto J D T, Mesa J, Bringas F, Bringas J F, Likhachev V P, Rodriguez O and Guzman F 1999 Eur. Phys. J. A 6 49
|
[23] |
Bespalova O V, Romanovsky E A and Spasskaya T I 2003 J. Phys. G: Nucl. Part. Phys. 29 1193
|
[24] |
Dasgupta M, Hinde D J, Newton J O and Haginon K 2004 Prog. Theor. Phys. Suppl. 154 209
|
[25] |
Ogloblin A A, Glukhov Yu A, Trzaska W H, Dem'yanova A S, Goncharov S A, Julin R, Klebnikov S V, Mutterer M, Rozhkov M V, Rudakov V P, Tiorin G P, Khoa Dao T and Satchler G R 2000 Phys. Rev. C 62 044601
|
[26] |
Clemenger K 1985 Phys. Rev. B 32 1359
|
[27] |
Junker G 1996 Supersymmetric Methods in Quantum and Statistical Physics (Berlin: Springer-Verlag)
|
[28] |
Dong S H 2007 Factorization Method in Quantum Mechanics (Netherlands: Springer)
|
[29] |
Agboola D 2010 Chin. Phys. Lett. 27 040301
|
[30] |
Dong S H 2011 Wave Equations in Higher Dimensions (Berlin: Springer)
|
[31] |
Jia C S, Liu J Y and Wang P Q 2008 Phys. Lett. A 372 4779
|
[32] |
Hellmann G 1937 Einfhrung in die Quantenchemie (Leipzig: Deutiche)
|
[33] |
Feynman R P 1939 Phys. Rev. 56 340
|
[34] |
Agboola D 2009 Phys. Scr. 80 065304
|
[35] |
Hibbert A 1975 Rep. Prog. Phys. 38 1217
|
[36] |
Lu L L, Xie W F and Hassanabadi H 2011 J. Lumin. 131 2538
|
[37] |
Hassanabadi H, Yazarloo B H and Lu L L 2012 Chin. Phys. Lett. 29 020303
|
[38] |
Light J C, Hamiltonian I P and Lill J V 1985 J. Chem. Phys. 82 1400
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|