|
|
Effects of asymmetric coupling and boundary on the dynamic behaviors of a random nearest neighbor coupled system |
Ling Xu(徐玲)1 and Lei Jiang(姜磊)2,† |
1 School of Mathematical Sciences, Sichuan Normal University, Chengdu 610066, China; 2 School of Mathematics and Statistics, Linyi University, Linyi 276000, China |
|
|
Abstract This study investigates the dynamical behaviors of nearest neighbor asymmetric coupled systems in a confined space. First, the study derivative analytical stability and synchronization conditions for the asymmetrically coupled system in an unconfined space, which are then validated through numerical simulations. Simulation results show that asymmetric coupling has a significant impact on synchronization conditions. Moreover, it is observed that irrespective of whether the system is confined, an increase in coupling asymmetry leads to a hastened synchronization pace. Additionally, the study examines the effects of boundaries on the system's collective behaviors via numerical experiments. The presence of boundaries ensures the system's stability and synchronization, and reducing these boundaries can expedite the synchronization process and amplify its effects. Finally, the study reveals that the system's output amplitude exhibits stochastic resonance as the confined boundary size increases.
|
Received: 02 February 2024
Revised: 25 March 2024
Accepted manuscript online: 07 April 2024
|
PACS:
|
05.40.-a
|
(Fluctuation phenomena, random processes, noise, and Brownian motion)
|
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
05.45.Xt
|
(Synchronization; coupled oscillators)
|
|
05.90.+m
|
(Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems)
|
|
Fund: Project supported by the Natural Science Foundation of Shandong Province of China for the Youth (Grant No. ZR2023QA102). |
Corresponding Authors:
Lei Jiang
E-mail: jl12130o0o@163.com
|
Cite this article:
Ling Xu(徐玲) and Lei Jiang(姜磊) Effects of asymmetric coupling and boundary on the dynamic behaviors of a random nearest neighbor coupled system 2024 Chin. Phys. B 33 060503
|
[1] Barzel B and Barabási A L 2013 Nat. Phys. 9 673 [2] Zheng Z 2019 Emergence dynamics in complex systems: from synchronization to collective transport-i (Beijing: Science Press) (in Chinese) [3] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175 [4] Acebrón J A, Bonilla L L, Vicente C J P, Ritort F and Spigler R 2005 Rev. Mod. Phys. 77 137 [5] Boccaletti S, Bianconi G, Criado R, Del Genio C I, Gómez-Gardenes J, Romance M, Sendina-Nadal I, Wang Z and Zanin M 2014 Phys. Rep. 544 1 [6] Ghosh S, Rangarajan G and Sinha S 2010 Europhys. Lett. 92 40012 [7] Dorfler F and Bullo F 2012 SIAM J. Control Optim. 50 1616 [8] Yang B, Zhang X, Zhang L and Luo M K 2016 Phys. Rev. E 94 022119 [9] Zhang L, Xu L, Yu T, Lai L and Zhong S C 2021 Commun. Nonlinear Sci. 93 105499 [10] Xu C, Sun Y T, Gao J, Jia WJ and Zheng Z G 2018 Nonlinear Dynam. 94 1267 [11] Perc M 2007 Phys. Rev. E 76 066203 [12] Pikovsky A, Rosenblum V and Kurths J 2001 Synchronization: A Universal Concept in Nonlinear Sciences (New York: Cambridge University Press) [13] Yang P, Liu F, Liu T and Hill D J 2023 IEEE Trans. Autom. Control. 1 [14] Sarfati R, Hayes J C and Peleg O 2021 Sci. Adv. 7 eabg9259 [15] Lai Y M and Porter M A 2013 Phys. Rev. E 88 012905 [16] Khalil H K 2002 Automatica 38 1091 [17] Gammaitoni L, Hänggi P, Jung P and Marchesoni F 1998 Rev. Mod. Phys. 70 223 [18] Rozenfeld R, Freund J A, Neiman A and Schimansky-Geier L 2001 Phys. Rev. E 64 051107 [19] Zhou C and Kurths J 2002 Phys. Rev. Lett. 88 230602 [20] Häunggi P and Jung P 1994 Adv. Chem. Phys. 89 239 [21] Sastry S 2013 Nonlinear systems: analysis, stability, and control, Vol. 10 (Springer Science & Business Media) [22] Wang Z and Liu Z 2020 Acta Phys. Sin. 69 088902 (in Chinese) [23] Zhang Y, Hu G and Gammaitoni L 1998 Phys. Rev. E 58 2952 [24] Powanwe A S and Longtin A 2020 Phys. Rev. Res. 2 043067 [25] Cantos C E, Hammond D K and Veerman J 2016 Eur. Phys. J. Special Topics 225 1199 [26] Gupta A K 2016 J. Stat. Phys. 162 1571 [27] Hillier D, Günel S, Suykens J A and Vandewalle J 2007 Int. J. Bifurcat. Chaos 17 4177 [28] Palacios A 2021 Phys. Rev. E 103 022206 [29] Batra P and Chopra R 2021 Physica A 561 125148 [30] Elvira K S, Solvas X C, Wootton R C and Demello A J 2013 Nat. Chem. 5 905 [31] Ai B Q and Liu L G 2006 Phys. Rev. E 74 051114 [32] Burada P S, Schmid G, Reguera D, Vainstein MH, Rubi J and Hänggi P 2008 Phys. Rev. Lett. 101 130602 [33] Zhang L, Lai L, Peng H, Tu Z and Zhong S 2018 Phys. Rev. E 97 012147 [34] Chen X, Luo M, Zhong Y and Zhang L 2022 Physica A 605 128006 [35] Li J h, Chen Q h and Zhou X f 2010 Phys. Rev. E 81 041104 [36] Lv J P, Liu H and Chen Q H 2009 Phys. Rev. B 79 104512 [37] Wang Q, Perc M, Duan Z and Chen G 2009 Chaos 19 023112 [38] Van Den Broeck C 1983 J. Stat. Phys. 31 467 [39] Gammaitoni L, Maichesoni F, Menichella-Saetta and Santucci S 1989 Phys. Rev. Lett. 62 349 [40] Bena I, Van den Broeck C, Kawai R and Lindenberg K 2002 Phys. Rev. E 66 045603 [41] Li J h 2011 Chaos 21 043115 [42] Berdichevsky V and Gitterman M 1996 Europhys. Lett. 36 161 [43] Fuliński A 1993 Phys. Lett. A 180 94 [44] Robertson B and Astumian R D 1991 J. Chem. Phys. 94 7414 [45] Kubo R 1963 J. Math. Phys. 4 174 [46] Hasty J, Pradines J, Dolnik M and Collins J J 2000 Proc. Natl. Acad. Sci. USA 97 2075 [47] Li J H and Han Y X 2006 Phys. Rev. E 74 051115 [48] Dorf R C and Bishop R H 2011 Modern control systems (Pearson) [49] Yu T, Zhang L, Ji Y and Lai L 2019 Commun. Nonlinear Sci. 72 26 [50] Kim C, Lee E K and Talkner P 2006 Phys. Rev. E 73 026101 [51] Xu B, Duan F, Bao R and Li J 2002 Chaos, Solitons and Fractals 13 633 [52] Liang X, Liu C and Zhang X 2020 Phys. Rev. E 101 022205 [53] Liang X, Hua L, Zhang X and Zhao L 2022 Phys. Rev. E 106 064306 [54] Varga R S 2010 Geršgorin and his circles, Vol. 36 (Springer Science & Business Media) [55] Kulkarni D, Schmidt D and Tsui S K 1999 Linear Algebra Appl. 297 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|