Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(6): 060503    DOI: 10.1088/1674-1056/ad3b86
GENERAL Prev   Next  

Effects of asymmetric coupling and boundary on the dynamic behaviors of a random nearest neighbor coupled system

Ling Xu(徐玲)1 and Lei Jiang(姜磊)2,†
1 School of Mathematical Sciences, Sichuan Normal University, Chengdu 610066, China;
2 School of Mathematics and Statistics, Linyi University, Linyi 276000, China
Abstract  This study investigates the dynamical behaviors of nearest neighbor asymmetric coupled systems in a confined space. First, the study derivative analytical stability and synchronization conditions for the asymmetrically coupled system in an unconfined space, which are then validated through numerical simulations. Simulation results show that asymmetric coupling has a significant impact on synchronization conditions. Moreover, it is observed that irrespective of whether the system is confined, an increase in coupling asymmetry leads to a hastened synchronization pace. Additionally, the study examines the effects of boundaries on the system's collective behaviors via numerical experiments. The presence of boundaries ensures the system's stability and synchronization, and reducing these boundaries can expedite the synchronization process and amplify its effects. Finally, the study reveals that the system's output amplitude exhibits stochastic resonance as the confined boundary size increases.
Keywords:  asymmetric coupled      confined space      synchronization      stochastic resonance      stability  
Received:  02 February 2024      Revised:  25 March 2024      Accepted manuscript online:  07 April 2024
PACS:  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  05.90.+m (Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems)  
Fund: Project supported by the Natural Science Foundation of Shandong Province of China for the Youth (Grant No. ZR2023QA102).
Corresponding Authors:  Lei Jiang     E-mail:  jl12130o0o@163.com

Cite this article: 

Ling Xu(徐玲) and Lei Jiang(姜磊) Effects of asymmetric coupling and boundary on the dynamic behaviors of a random nearest neighbor coupled system 2024 Chin. Phys. B 33 060503

[1] Barzel B and Barabási A L 2013 Nat. Phys. 9 673
[2] Zheng Z 2019 Emergence dynamics in complex systems: from synchronization to collective transport-i (Beijing: Science Press) (in Chinese)
[3] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
[4] Acebrón J A, Bonilla L L, Vicente C J P, Ritort F and Spigler R 2005 Rev. Mod. Phys. 77 137
[5] Boccaletti S, Bianconi G, Criado R, Del Genio C I, Gómez-Gardenes J, Romance M, Sendina-Nadal I, Wang Z and Zanin M 2014 Phys. Rep. 544 1
[6] Ghosh S, Rangarajan G and Sinha S 2010 Europhys. Lett. 92 40012
[7] Dorfler F and Bullo F 2012 SIAM J. Control Optim. 50 1616
[8] Yang B, Zhang X, Zhang L and Luo M K 2016 Phys. Rev. E 94 022119
[9] Zhang L, Xu L, Yu T, Lai L and Zhong S C 2021 Commun. Nonlinear Sci. 93 105499
[10] Xu C, Sun Y T, Gao J, Jia WJ and Zheng Z G 2018 Nonlinear Dynam. 94 1267
[11] Perc M 2007 Phys. Rev. E 76 066203
[12] Pikovsky A, Rosenblum V and Kurths J 2001 Synchronization: A Universal Concept in Nonlinear Sciences (New York: Cambridge University Press)
[13] Yang P, Liu F, Liu T and Hill D J 2023 IEEE Trans. Autom. Control. 1
[14] Sarfati R, Hayes J C and Peleg O 2021 Sci. Adv. 7 eabg9259
[15] Lai Y M and Porter M A 2013 Phys. Rev. E 88 012905
[16] Khalil H K 2002 Automatica 38 1091
[17] Gammaitoni L, Hänggi P, Jung P and Marchesoni F 1998 Rev. Mod. Phys. 70 223
[18] Rozenfeld R, Freund J A, Neiman A and Schimansky-Geier L 2001 Phys. Rev. E 64 051107
[19] Zhou C and Kurths J 2002 Phys. Rev. Lett. 88 230602
[20] Häunggi P and Jung P 1994 Adv. Chem. Phys. 89 239
[21] Sastry S 2013 Nonlinear systems: analysis, stability, and control, Vol. 10 (Springer Science & Business Media)
[22] Wang Z and Liu Z 2020 Acta Phys. Sin. 69 088902 (in Chinese)
[23] Zhang Y, Hu G and Gammaitoni L 1998 Phys. Rev. E 58 2952
[24] Powanwe A S and Longtin A 2020 Phys. Rev. Res. 2 043067
[25] Cantos C E, Hammond D K and Veerman J 2016 Eur. Phys. J. Special Topics 225 1199
[26] Gupta A K 2016 J. Stat. Phys. 162 1571
[27] Hillier D, Günel S, Suykens J A and Vandewalle J 2007 Int. J. Bifurcat. Chaos 17 4177
[28] Palacios A 2021 Phys. Rev. E 103 022206
[29] Batra P and Chopra R 2021 Physica A 561 125148
[30] Elvira K S, Solvas X C, Wootton R C and Demello A J 2013 Nat. Chem. 5 905
[31] Ai B Q and Liu L G 2006 Phys. Rev. E 74 051114
[32] Burada P S, Schmid G, Reguera D, Vainstein MH, Rubi J and Hänggi P 2008 Phys. Rev. Lett. 101 130602
[33] Zhang L, Lai L, Peng H, Tu Z and Zhong S 2018 Phys. Rev. E 97 012147
[34] Chen X, Luo M, Zhong Y and Zhang L 2022 Physica A 605 128006
[35] Li J h, Chen Q h and Zhou X f 2010 Phys. Rev. E 81 041104
[36] Lv J P, Liu H and Chen Q H 2009 Phys. Rev. B 79 104512
[37] Wang Q, Perc M, Duan Z and Chen G 2009 Chaos 19 023112
[38] Van Den Broeck C 1983 J. Stat. Phys. 31 467
[39] Gammaitoni L, Maichesoni F, Menichella-Saetta and Santucci S 1989 Phys. Rev. Lett. 62 349
[40] Bena I, Van den Broeck C, Kawai R and Lindenberg K 2002 Phys. Rev. E 66 045603
[41] Li J h 2011 Chaos 21 043115
[42] Berdichevsky V and Gitterman M 1996 Europhys. Lett. 36 161
[43] Fuliński A 1993 Phys. Lett. A 180 94
[44] Robertson B and Astumian R D 1991 J. Chem. Phys. 94 7414
[45] Kubo R 1963 J. Math. Phys. 4 174
[46] Hasty J, Pradines J, Dolnik M and Collins J J 2000 Proc. Natl. Acad. Sci. USA 97 2075
[47] Li J H and Han Y X 2006 Phys. Rev. E 74 051115
[48] Dorf R C and Bishop R H 2011 Modern control systems (Pearson)
[49] Yu T, Zhang L, Ji Y and Lai L 2019 Commun. Nonlinear Sci. 72 26
[50] Kim C, Lee E K and Talkner P 2006 Phys. Rev. E 73 026101
[51] Xu B, Duan F, Bao R and Li J 2002 Chaos, Solitons and Fractals 13 633
[52] Liang X, Liu C and Zhang X 2020 Phys. Rev. E 101 022205
[53] Liang X, Hua L, Zhang X and Zhao L 2022 Phys. Rev. E 106 064306
[54] Varga R S 2010 Geršgorin and his circles, Vol. 36 (Springer Science & Business Media)
[55] Kulkarni D, Schmidt D and Tsui S K 1999 Linear Algebra Appl. 297
[1] Theoretical insights into thermal transport and structural stability mechanisms of triaxial compressed methane hydrate
Dong-Sheng Chen(陈东升), Ting-Ting Miao(缪婷婷), Cheng Chang(常程), Xu-Yang Guo(郭旭洋), Meng-Yan Guan(关梦言), and Zhong-Li Ji(姬忠礼). Chin. Phys. B, 2024, 33(9): 096501.
[2] Dynamic properties of rumor propagation model induced by Lévy noise on social networks
Ying Jing(景颖), Youguo Wang(王友国), Qiqing Zhai(翟其清), and Xianli Sun(孙先莉). Chin. Phys. B, 2024, 33(9): 090203.
[3] Interface and mechanical degradation mechanisms of the silicon anode in sulfide-based solid-state batteries at high temperatures
Qiuchen Wang(王秋辰), Yuli Huang(黄昱力), Jing Xu(许晶), Xiqian Yu(禹习谦), Hong Li(李泓), and Liquan Chen(陈立泉). Chin. Phys. B, 2024, 33(8): 088201.
[4] Spectral characteristics of laser-plasma instabilities with a broadband laser
Guo-Xiao Xu(许国潇), Ning Kang(康宁), An-Le Lei(雷安乐), Hui-Ya Liu(刘会亚), Yao Zhao(赵耀), Shen-Lei Zhou(周申蕾), Hong-Hai An(安红海), Jun Xiong(熊俊), Rui-Rong Wang(王瑞荣), Zhi-Yong Xie(谢志勇), Xi-Chen Zhou(周熙晨), Zhi-Heng Fang(方智恒), and Wei Wang(王伟). Chin. Phys. B, 2024, 33(8): 085204.
[5] Defect chemistry engineering of Ga-doped garnet electrolyte with high stability for solid-state lithium metal batteries
Sihan Chen(陈思汗), Jun Li(黎俊), Keke Liu(刘可可), Xiaochen Sun(孙笑晨), Jingwei Wan(万京伟), Huiyu Zhai(翟慧宇), Xinfeng Tang(唐新峰), and Gangjian Tan(谭刚健). Chin. Phys. B, 2024, 33(8): 088203.
[6] Physics package based on intracavity laser cooling 87Rb atoms for space cold atom microwave clock
Siminda Deng(邓思敏达), Wei Ren(任伟), Jingfeng Xiang(项静峰), Jianbo Zhao(赵剑波), Lin Li(李琳), Di Zhang(张迪), Jinyin Wan(万金银), Yanling Meng(孟艳玲), Xiaojun Jiang(蒋小军), Tang Li(李唐), Liang Liu(刘亮), and Desheng Lü(吕德胜). Chin. Phys. B, 2024, 33(7): 070602.
[7] Optimal parameter space for stabilizing the ferroelectric phase of Hf0.5Zr0.5O2 thin films under strain and electric fields
Lvjin Wang(王侣锦), Cong Wang(王聪), Linwei Zhou(周霖蔚), Xieyu Zhou(周谐宇), Yuhao Pan(潘宇浩), Xing Wu(吴幸), and Wei Ji(季威). Chin. Phys. B, 2024, 33(7): 076803.
[8] Proposal for a realtime Einstein-synchronization-defined satellite virtual clock
Chenhao Yan(严晨皓), Xueyi Tang(汤雪逸), Shiguang Wang(王时光), Lijiaoyue Meng(孟李皎悦), Haiyuan Sun(孙海媛), Yibin He(何奕彬), and Lijun Wang(王力军). Chin. Phys. B, 2024, 33(7): 070601.
[9] Performance enhancement of a viscoelastic bistable energy harvester using time-delayed feedback control
Mei-Ling Huang(黄美玲), Yong-Ge Yang(杨勇歌), and Yang Liu(刘洋). Chin. Phys. B, 2024, 33(6): 060203.
[10] Dynamics and synchronization of neural models with memristive membranes under energy coupling
Jingyue Wan(万婧玥), Fuqiang Wu(吴富强), Jun Ma(马军), and Wenshuai Wang(汪文帅). Chin. Phys. B, 2024, 33(5): 050504.
[11] Synchronization and firing mode transition of two neurons in a bilateral auditory system driven by a high-low frequency signal
Charles Omotomide Apata, Yi-Rui Tang(唐浥瑞), Yi-Fan Zhou(周祎凡), Long Jiang(蒋龙), and Qi-Ming Pei(裴启明). Chin. Phys. B, 2024, 33(5): 058704.
[12] Stability and melting behavior of boron phosphide under high pressure
Wenjia Liang(梁文嘉), Xiaojun Xiang(向晓君), Qian Li(李倩), Hao Liang(梁浩), and Fang Peng(彭放). Chin. Phys. B, 2024, 33(4): 046201.
[13] Effect of external magnetic field on the instability of THz plasma waves in nanoscale graphene field-effect transistors
Liping Zhang(张丽萍), Zongyao Sun(孙宗耀), Jiani Li(李佳妮), and Junyan Su(苏俊燕). Chin. Phys. B, 2024, 33(4): 048102.
[14] Chimera states of phase oscillator populations with nonlocal higher-order couplings
Yonggang Wu(伍勇刚), Huajian Yu(余华健), Zhigang Zheng(郑志刚), and Can Xu(徐灿). Chin. Phys. B, 2024, 33(4): 040504.
[15] Enhanced stability of FA-based perovskite: Rare-earth metal compound EuBr2 doping
Minna Hou(候敏娜), Xu Guo(郭旭), Meidouxue Han(韩梅斗雪), Juntao Zhao(赵均陶), Zhiyuan Wang(王志元), Yi Ding(丁毅), Guofu Hou(侯国付), Zongsheng Zhang(张宗胜), and Xiaoping Han(韩小平). Chin. Phys. B, 2024, 33(4): 047802.
No Suggested Reading articles found!