PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Model of self-generated magnetic field generation from relativistic laser interaction with solid targets |
Rui Yan(严睿)1, De-Bin Zou(邹德滨)2,†, Na Zhao(赵娜)3, Xiao-Hu Yang(杨晓虎)4, Xiang-Rui Jiang(蒋祥瑞)2, Li-Xiang Hu(胡理想)2, Xin-Rong Xu(徐新荣)2, Hong-Yu Zhou(周泓宇)2, Tong-Pu Yu(余同普)2, Hong-Bin Zhuo(卓红斌)5, Fu-Qiu Shao(邵福球)2, and Yan Yin(银燕)2,‡ |
1 Northwest Institute of Nuclear Technology, Xi'an 710024, China; 2 Department of Physics, National University of Defense Technology, Changsha 410073, China; 3 School of Microelectronics and Physics, Hunan University of Technology and Business, Changsha 410205, China; 4 Department of Nuclear Science and Technology, National University of Defense Technology, Changsha 410073, China; 5 College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China |
|
|
Abstract Generation of self-generated annular magnetic fields at the rear side of a solid target driven by relativistic laser pulse is investigated by using theoretical analysis and particle-in-cell simulations. The spatial strength distribution of magnetic fields can be accurately predicted by calculating the net flow caused by the superposition of source flow and return flow of hot electrons. The theoretical model established shows good agreement with the simulation results, indicating that the magnetic-field strength scales positively to the temperature of hot electrons. This provides us a way to improve the magnetic-field generation by using a micro-structured plasma grating in front of the solid target. Compared with that for a common flat target, hot electrons can be effectively heated with the well-designed grating size, leading to a stronger magnetic field. The spatial distribution of magnetic fields can be modulated by optimizing the grating period and height as well as the incident angle of the laser pulse.
|
Received: 14 December 2023
Revised: 23 February 2024
Accepted manuscript online: 13 March 2024
|
PACS:
|
52.38.Fz
|
(Laser-induced magnetic fields in plasmas)
|
|
52.38.-r
|
(Laser-plasma interactions)
|
|
42.79.Dj
|
(Gratings)
|
|
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 12175310, 12305268, and U2241281), the Natural Science Foundation of Hunan Province (Grant Nos. 2024JJ6184, 2022JJ20042, and 2021JJ40653), and the Scientific Research Foundation of Hunan Provincial Education Department (Grant Nos. 22B0655 and 22A0435). |
Corresponding Authors:
De-Bin Zou, Yan Yin
E-mail: debinzou@nudt.edu.cn;yyin@nudt.edu.cn
|
Cite this article:
Rui Yan(严睿), De-Bin Zou(邹德滨), Na Zhao(赵娜), Xiao-Hu Yang(杨晓虎), Xiang-Rui Jiang(蒋祥瑞), Li-Xiang Hu(胡理想), Xin-Rong Xu(徐新荣), Hong-Yu Zhou(周泓宇), Tong-Pu Yu(余同普), Hong-Bin Zhuo(卓红斌), Fu-Qiu Shao(邵福球), and Yan Yin(银燕) Model of self-generated magnetic field generation from relativistic laser interaction with solid targets 2024 Chin. Phys. B 33 055203
|
[1] Tatarakis M, Watts I, Beg F N, Clark E L, Dangor A E, Gopal A, Haines M G, Norreys P A, Wagner U, Wei M S, Zepf M and Krushelnick K 2002 Nature 415 280 [2] Tatarakis M, Gopal A, Watts I, Beg F N, Dangor A E, Krushelnick K, Wagner U, Norreys P A, Clark E L, Zepf M, Evans R G, et al. 2002 Phys. Plasmas 9 2244 [3] Sarri G, Macchi A, Cecchetti C A, Kar S, Liseykina T V, Yang X H, Dieckmann M E, Fuchs J, Galimberti M, Gizzi L A, Jung R, Kourakis I, Osterholz J, Pegoraro F, Robinson A P L, Romagnani L, Willi O and Borghesi M 2012 Phys. Rev. Lett. 109 205002 [4] Fujioka S, Zhang Z, Ishihara K, Shigemori K, Hironaka Y, Johzaki T, Sunahara A, Yamamoto N, Nakashima H, Watanabe T, Shiraga H, Nishimura H and Azechi H 2013 Sci. Rep. 3 1170 [5] Wang W M, Gibbon P, Sheng Z M and Li Y T 2015 Phys. Rev. Lett. 114 015001 [6] Nakamura D, Ikeda A, Sawabe H, Matsuda Y H and Takeyama S 2018 Rev. Sci. Instrum. 89 095106 [7] Murakami M, Honrubia J J, Weichman K, Arefiev A V and Bulanov S V 2020 Sci. Rep. 10 16653 [8] Park H S, Huntington C M, Fiuza F, et al. 2015 Nat. Phys. 11 173 [9] Fiksel G, Fox W, Bhattacharjee A, Barnak D H, Chang P Y, Germaschewski K, Hu S X and Nilson P M 2014 Phys. Rev. Lett. 113 105003 [10] Bulanov S V, Esirkepov T Zh, Kando M, Koga J, Kondo K and Korn G 2015 Plasma Phys. Rep. 41 1 [11] Stamper J A, McLean E A and Ripin B H 1978 Phys. Rev. Lett. 40 1177 [12] Strozzi D J, Tabak M, Larson D J, Divol L, Kemp A J, Bellei C, Marinak M M and Key M H 2012 Phys. Plasmas 19 072711 [13] Sakata S, Lee S, Morita H, et al. 2018 Nat. Commun. 9 3937 [14] Miyazaki S, Kawata S, Sonobe R and Kikuchi T 2005 Phys. Rev. E 71 056403 [15] Pukhov A 2001 Phys. Rev. Lett. 86 3562 [16] Chen H, Wilks S C, Meyerhofer D D, Bonlie J, Chen C D, Chen S N, Courtois C, Elberson L, Gregori G, Kruer W, Landoas O, Mithen J, Myatt J, Murphy C D, Nilson P, Price D, Schneider M, Shepherd R, Stoeckl C, Tabak M, Tommasini R and Beiersdorfer P 2010 Phys. Rev. Lett. 105 015003 [17] Kopp R A and Pneuman G W 1976 Sol. Phys. 50 85 [18] Masuda S, Kosugi T, Hara H, Tsuneta S and Ogawara Y 1994 Nature 371 495 [19] Sudan R N 1993 Phys. Rev. Lett. 70 3075 [20] Kolodner P and Yablonovitch E 1979 Phys. Rev. Lett. 43 1402 [21] Stamper J A 1991 Laser Part. Beam 9 841 [22] Haines M G 1997 Phys. Rev. Lett. 78 254 [23] Bell A R, Davies J R and Guerin S M 1998 Phys. Rev. E 58 2471 [24] Macchi A 2012 arXiv: 1202.0389 [25] Weichman K, Murakami M, Robinson A P L and Arefiev A V 2020 Appl. Phys. Lett. 117 244101 [26] Nakatsutsumi M, Sentoku Y, Korzhimanov A, Chen S N, Buffechoux S, Kon A, Atherton B, Audebert P, Geissel M, Hurd L, Kimmel M, Rambo P, Schollmeier M, Schwarz J, Starodubtsev M, Gremillet L, Kodama R and Fuchs J 2018 Nat. Commun. 9 280 [27] Moore C I, Knauer J P and Meyerhofer D D 1995 Phys. Rev. Lett. 74 2439 [28] Kolodner P and Yablonovitch E 1979 Phys. Rev. Lett. 43 1402 [29] Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, MacKinnon A and Snavely R A 2001 Phys. Plasmas 8 542 [30] Gurevich A V, Pariiskaya L V and Pitaevskii L P 1966 Sov. Phys. JETP 22 449 [31] Mora P 2003 Phys. Rev. Lett. 90 185002 [32] Jackson J D 1999 Classical Electrodynamics (New York: Wiley) p. 833 [33] Tikhonchuk V T, Andreev A A, Bochkarev S G and Bychenkov V Y 2005 Plasma Phys. Control. Fusion 47 B869 [34] Robinson A P L, Bell A R and Kingham R J 2006 Phys. Rev. Lett. 96 035005 [35] Beg F N, Bell A R, Dangor A E, Danson C N, Fews A P, Glinsky M E, Hammel B A, Lee P, Norreys P A and Tatarakis M 1997 Phys. Plasmas 4 447 [36] Haines M G, Wei M S, Beg F N and Stephens R B 2009 Phys. Rev. Lett. 102 045008 [37] Kluge T, Cowan T, Debus A, Schramm U, Zeil K and Bussmann M 2011 Phys. Rev. Lett. 107 205003 [38] Zou D B, Pukhov A, Yi L Q, Zhuo H B, Yu T P, Yin Y and Shao F Q 2017 Sci. Rep. 7 42666 [39] Gauthier J C J, Bastiani S, Audebert P, Geindre J P, Neuman K, Donnelly T D, Hoffer M, Falcone R W, Shepherd R L, Price D F and White W E 1995 Proc. SPIE 2523 242 [40] Kupersztych J, Raynaud M and Riconda C 2004 Phys. Plasmas 11 1669 [41] Raynaud M, Kupersztych J, Riconda C, Adam J C, Héron A, et al. 2007 Phys. Plasmas 14 092679 [42] Hu G Y, Lei A L, Wang J W, Huang L G, Wang W T, Wang X, Xu Y, Shen B F, Liu J S, Yu W, Li R X and Xu Z Z 2010 Phys. Plasmas 17 083102 [43] Lavocat-Dubuis X and Matte J P 2010 Phys. Plasmas 17 093105 [44] Li Y T, Yuan X H, Xu M H, Zheng Z Y, Sheng Z M, Chen M, Ma Y Y, Liang W X, Yu Q Z, Zhang Y, Liu F, Wang Z H, Wei Z Y, Zhao W, Jin Z and Zhang J 2006 Phys. Rev. Lett. 96 165003 [45] Wang W M, Sheng Z M and Zhang J 2008 Phys. Plasmas 15 030702 [46] Hu G Y, Lei A L, Wang W T, Wang X, Huang L G, Wang J W, Xu Y, Liu J S, Yu W, Shen B F, Li R X and Xu Z Z 2010 Phys. Plasmas 17 033109 [47] Klimo O, Psikal J, Limpouch J, Proska J, Novotny F, Ceccotti T, Floquet V and Kawata S 2011 New J. Phys. 13 053028 [48] Kaw P K and McBride J B 1970 Phys. Fluids 13 1784 [49] Pukhov A, Sheng Z M and Meyer-ter-Vehn J 1999 Phys. Plasmas 6 2847 [50] Jiang X R, Shao F Q, Zou D B, Yu M Y, Hu L X, Guo X Y, Huang T W, Zhang H, Wu S Z, Zhang G B, Yu T P, Yin Y, Zhuo H B and Zhou C T 2020 Nucl. Fusion 60 076019 [51] Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings. In: Springer Tracts in Modern Physics (Berlin: Springer) vol. 111 [52] Zou D B, Yu D Y, Jiang X R, Yu M Y, Chen Z Y, Deng Z G, Yu T P, Yin Y, Shao F Q, Zhuo H B, Zhou C T and Ruan S C 2019 Phys. Plasmas 26 123105 [53] Ji L L, Snyder J, Pukhov A, Freeman R R and Akli K U 2016 Sci. Rep. 6 23256 [54] Ridgers C P, Brady C S, Duclous R, Kirk J G, Bennett K, Arber T D, Robinson A P L and Bell A R 2012 Phys. Rev. Lett. 108 165006 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|