CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Nature of the band gap of halide perovskites ABX3 (A= CH3NH3, Cs; B= Sn, Pb; X= Cl, Br, I): First-principles calculations |
Yuan Ye (袁野)a, Xu Run (徐闰)a, Xu Hai-Tao (徐海涛)a, Hong Feng (洪峰)b, Xu Fei (徐飞)b, Wang Lin-Jun (王林军)a |
a School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China; b Department of Physics, Shanghai University, Shanghai 200444, China |
|
|
Abstract The electronic structures of cubic structure of ABX3 (A= CH3NH3,Cs; B= Sn, Pb; X= Cl, Br, I) are analyzed by density functional theory using the Perdew-Burke-Ernzerhof exchange-correlation functional and using the Heyd-Scuseria-Ernzerhof hybrid functional. The valence band maximum (VBM) is found to be made up by an antibonding hybridization of B s and X p states, whereas bands made up by the π antibonding of B p and X p states dominates the conduction band minimum (CBM). The changes of VBM, CBM, and band gap with ion B and X are then systematically summarized. The natural band offsets of ABX3 are partly given. We also found for all the ABX3 perovskite materials in this study, the bandgap increases with an increasing lattice parameter. This phenomenon has good consistency with the experimental results.
|
Received: 26 March 2015
Revised: 14 June 2015
Accepted manuscript online:
|
PACS:
|
63.20.dk
|
(First-principles theory)
|
|
71.20.-b
|
(Electron density of states and band structure of crystalline solids)
|
|
81.07.Pr
|
(Organic-inorganic hybrid nanostructures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11375112). |
Corresponding Authors:
Xu Run
E-mail: runxu@staff.shu.edu.cn
|
Cite this article:
Yuan Ye (袁野), Xu Run (徐闰), Xu Hai-Tao (徐海涛), Hong Feng (洪峰), Xu Fei (徐飞), Wang Lin-Jun (王林军) Nature of the band gap of halide perovskites ABX3 (A= CH3NH3, Cs; B= Sn, Pb; X= Cl, Br, I): First-principles calculations 2015 Chin. Phys. B 24 116302
|
[1] |
Heidrich K, Schafer W, Schreiber M, Sochtig J, Grandke T and Stolz H J;1981 Phys. Rev. B 24 5642
|
[2] |
Chung I, Lee B, He J Q, Chang R P and Kanatzidis M G;2012 Nature 485 486
|
[3] |
Snaith H J;2013 Phys. Chem. Lett. 4 3623
|
[4] |
Bretschneider S A, Weickert J, Dorman J A and Schmidt-Mende L;2014 APL Mater. 2 040701
|
[5] |
Gao P, Gratzel M and Nazeeruddin M K;2014 Energ. Environ. Sci. 7 2448
|
[6] |
Umebayashi T, Asai K, Kondo T and Nakao A;2003 Phys. Rev. B 67 155405
|
[7] |
Brivio F, Walker A B and Walsh A;2013 APL Mater. 1 042111
|
[8] |
Lang L, Yang J H, Liu H R, Xiang H J and Gong X G;2014 Phys. Lett. A 378 290
|
[9] |
Ghebouli M A, Ghebouli B and Fatmi M;2011 Physica B 406 1837
|
[10] |
Chang Y H, Park C H and Matsuishi K;2004 J. Korean Chem. Soc. 44 889
|
[11] |
Murtaza G and Ahmad I;2011 Physica B 406 3222
|
[12] |
Perdew J P, Burke K and Ernzerhof M;1996 Phys. Rev. Lett. 77 3865
|
[13] |
Heyd J and Scuseria G E;2004 J. Chem. Phys. 120 7274
|
[14] |
Hautier G, Miglio A, Ceder G, Rignanese G M and Gonze X;2013 Nat. Commun. 4 2292
|
[15] |
Yamada Y, Nakamura T, Endo M, Wakamiya A and Kanemitsu Y;2015 IEEE J. Photovolt. 5 401
|
[16] |
Heyd J, Scuseria G E and Ernzerhof M;2006 J. Chem. Phys. 124 219906
|
[17] |
Kresse G and Furthmüller J;1996 Phys. Rev. B 54 11169
|
[18] |
Umari P, Mosconi E and De Angelis F;2014 Sci. Rep. 4 4467
|
[19] |
Takahashi Y, Obara R, Lin Z Z, Takahashi Y, Naito T, Inabe T and Terakura K;2011 Dalton T. 40 5563
|
[20] |
Yamada K, Kawaguchi H, Matsui T, Okuda T and Ichiba S;1990 Bull. Chem. Soc. Jpn. 63 2521
|
[21] |
Yamada K, Funabiki S, Horimoto H, Matsui T, Okuda T and Ichiba S;1991 Chem. Lett. 20 801
|
[22] |
Lim A R and Jeong S Y;1999 Solid State Commun. 110 131
|
[23] |
Jiang L Q, Guo J K, Liu H B, Zhu M, Zhou X, Wu P and Li C H;2006 J. Phys. Chem. Solids 67 1531
|
[24] |
Trots D M and Myagkota S V;2008 J. Phys. Chem. Solids 69 2520
|
[25] |
Yamada K, Kuranaga Y, Ueda K, Goto S, Okuda T and Furukawa Y;1998 Bull. Chem. Soc. Jpn. 71 127
|
[26] |
Chiarella F, Zappettini A and Licci F;2008 Phys. Rev. B 77 045129
|
[27] |
Kitazawa N, Watanabe Y and Nakamura Y;2002 J. Mater. Sci. 37 3585
|
[28] |
Noh J H, Im S H, Heo J H, Mandal T N and Seok S I;2013 Nano Lett. 13 1764
|
[29] |
Baikie T, Fang Y N, Kadro J M, Schreyer M, Wei F X, Mhaisalkar S G, Graetzel M and White T J;2013 J. Mater. Chem. A 1 5628
|
[30] |
Heidrich K, Schafer W, Schreiber M, Sochtig J, Trendel G, Treusch J, Grandke T and Stolz H J;1981 Phys. Rev. B 24 5642
|
[31] |
Hao F, Stoumpos C C, Chang R P and Kanatzidis M G;2014 J. Am. Chem. Soc. 136 8094
|
[32] |
Xu F, Cao R, Ma Z, Xu R, Chen D and Wu Y 2014 1st Conference on New Generation Solar Cells and Perovskite Solar Cells, May 24-25, 2014, Beijing, China, p. 36
|
[33] |
Shi J J, Dong W, Xu Y Z, Li C H, Lü S T, Zhu L F, Dong J, Luo Y H, Li D M, Meng Q B and Chen Q;2013 Chin. Phys. Lett. 30 128402
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|