Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 047103    DOI: 10.1088/1674-1056/ad23d2
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Actively tuning anisotropic light—matter interaction in biaxial hyperbolic material α-MoO3 using phase change material VO2 and graphene

Kun Zhou(周昆)1,2, Yang Hu(胡杨)3,4, Biyuan Wu(吴必园)3,4, Xiaoxing Zhong(仲晓星)1,2,†, and Xiaohu Wu(吴小虎)3,‡
1 School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China;
2 Key Laboratory of Gas and Fire Control for Coal Mines(Ministry of Education), China University of Mining and Technology, Xuzhou 221116, China;
3 Shandong Institute of Advanced Technology, Jinan 250100, China;
4 School of Power and Energy, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  Anisotropic hyperbolic phonon polaritons (PhPs) in natural biaxial hyperbolic material α-MoO3 has opened up new avenues for mid-infrared nanophotonics, while active tunability of α-MoO3 PhPs is still an urgent problem necessarily to be solved. In this study, we present a theoretical demonstration of actively tuning α-MoO3 PhPs using phase change material VO2 and graphene. It is observed that α-MoO3 PhPs are greatly dependent on the propagation plane angle of PhPs. The insulator-to-metal phase transition of VO2 has a significant effect on the hybridization PhPs of the α-MoO3/VO2 structure and allows to obtain actively tunable α-MoO3 PhPs, which is especially obvious when the propagation plane angle of PhPs is 90°. Moreover, when graphene surface plasmon sources are placed at the top or bottom of α-MoO3 in α-MoO3/VO2 structure, tunable coupled hyperbolic plasmon—phonon polaritons inside its Reststrahlen bands (RBs) and surface plasmon—phonon polaritons outside its RBs can be achieved. In addition, the above-mentioned α-MoO3-based structures also lead to actively tunable anisotropic spontaneous emission (SE) enhancement. This study may be beneficial for realization of active tunability of both PhPs and SE of α-MoO3, and facilitate a deeper understanding of the mechanisms of anisotropic light—matter interaction in α-MoO3 using functional materials.
Keywords:  light—matter interaction      hyperbolic material      phase change material      graphene  
Received:  11 September 2023      Revised:  10 January 2024      Accepted manuscript online:  30 January 2024
PACS:  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
  63.22.Rc (Phonons in graphene)  
  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 52204258 and 52106099), the Postdoctoral Research Foundation of China (Grant No. 2023M743779), the Fundamental Research Funds for the Central Universities (Grant No. 2022QN1017), the Key Research Development Projects in Xinjiang Uygur Autonomous Region (Grant No. 2022B03003-3), and the Shandong Provincial Natural Science Foundation (Grant No. ZR2020LLZ004).
Corresponding Authors:  Xiaoxing Zhong, Xiaohu Wu     E-mail:  zhxxcumt@cumt.edu.cn;xiaohu.wu@iat.cn

Cite this article: 

Kun Zhou(周昆), Yang Hu(胡杨), Biyuan Wu(吴必园), Xiaoxing Zhong(仲晓星), and Xiaohu Wu(吴小虎) Actively tuning anisotropic light—matter interaction in biaxial hyperbolic material α-MoO3 using phase change material VO2 and graphene 2024 Chin. Phys. B 33 047103

[1] Poddubny A, Iorsh I, Belov P and Kivshar Y 2013 Nat. Photon. 7 948
[2] Drachev V P, Podolskiy V A and Kildishev A V 2013 Opt. Express 21 15048
[3] Smith D and Schurig D 2003 Phys. Rev. Lett. 90 077405
[4] Wu X, McEleney C A, González-Jiménez M and Mac^edo R 2019 Optica 6 1478
[5] Wu X and Fu C 2021 Int. J. Heat Mass Transfer 168 120908
[6] Liu R, Zhou C, Zhang Y, Cui Z, Wu X and Yi H 2022 Int. J. Extreme Manufact. 4 032002
[7] Ma W, Alonso-González P, Li S, Nikitin A Y, Yuan J, Martín-Sánchez J, Taboada-Gutiérrez J, Amenabar I, Li P and Vélez S 2018 Nature 562 557
[8] Zheng Z, Chen J, Wang Y, Wang X, Chen X, Liu P, Xu J, Xie W, Chen H and Deng S 2018 Adv. Mater. 30 1705318
[9] Zheng Z, Xu N, Oscurato S L, Tamagnone M, Sun F, Jiang Y, Ke Y, Chen J, Huang W and Wilson W L 2019 Sci. Adv. 5 eaav8690
[10] lvarez-Pérez G, Folland T G, Errea I, Taboada-Gutiérrez J, Duan J, Martín-Sánchez J, Tresguerres-Mata A I, Matson J R, Bylinkin A and He M 2020 Adv. Mater. 32 1908176
[11] Wu X and Liu R 2020 ES Energy & Environ. 10 66
[12] Bapat A, Dixit S, Gupta Y, Low T and Kumar A 2022 Nanophotonics 11 2329
[13] Liu H, Ai Q, Ma M, Wang Z and Xie M 2022 Int. J. Therm. Sci. 177 107587
[14] Liu H, Hu Y, Ai Q, Xie M and Wu X 2022 J. Appl. Phys. 132 175105
[15] Dai S, Zhang J, Ma Q, Kittiwatanakul S, McLeod A, Chen X, Corder S G, Watanabe K, Taniguchi T and Lu J 2019 Adv. Mater. 31 1900251
[16] Zhou K, Lu L, Li B and Cheng Q 2021 J. Appl. Phys. 130 093102
[17] Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[18] Fei Z, Rodin A, Andreev G O, Bao W, McLeod A, Wagner M, Zhang L, Zhao Z, Thiemens M and Dominguez G 2012 Nature 487 82
[19] Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A and Shen Y R 2011 Nat. Nanotechnol. 6 630
[20] Grigorenko A N, Polini M and Novoselov K 2012 Nat. Photon. 6 749
[21] Bao Q and Loh K P 2012 ACS Nano 6 3677
[22] Song J and Cheng Q 2016 Phys. Rev. B 94 125419
[23] Kumar A, Low T, Fung K H, Avouris P and Fang N X 2015 Nano Lett. 15 3172
[24] Zhou K, Cheng Q, Lu L, Li B, Song J and Luo Z 2020 Opt. Express 28 1647
[25] Xu J, Cui X, Liu N, Chen Y and Wang H W 2021 SmartMat 2 202
[26] Sun M, Zhang C, Chen D, Wang J, Ji Y, Liang N, Gao H, Cheng S and Liu H 2021 SmartMat 2 213
[27] Zhou K, Cheng Q, Lu L, Li B, Song J, Si M and Luo Z 2020 Appl. Opt. 59 595
[28] Song J, Cheng Q, Lu L, Li B, Zhou K, Zhang B, Luo Z and Zhou X 2020 Phys. Rev. Appl. 13 024054
[29] Benkahoul M, Chaker M, Margot J, Haddad E, Kruzelecky R, Wong B, Jamroz W and Poinas P 2011 Sol. Energy Mater. Sol. Cells 95 3504
[30] Choi H, Ahn J, Jung J, Noh T and Kim D 1996 Phys. Rev. B 54 4621
[31] Soltani M, Chaker M, Haddad E, Kruzelecky R and Margot J 2004 Appl. Phys. Lett. 85 1958
[32] Shibuya K, Kawasaki M and Tokura Y 2010 Appl. Phys. Lett. 96 022102
[33] Lee S, Hippalgaonkar K, Yang F, Hong J, Ko C, Suh J, Liu K, Wang K, Urban J J and Zhang X 2017 Science 355 371
[34] Tang K, Dong K, Li J, Gordon M P, Reichertz F G, Kim H, Rho Y, Wang Q, Lin C Y and Grigoropoulos C P 2021 Science 374 1504
[35] Mlyuka N, Niklasson G A and Granqvist C-G 2009 Sol. Energy Mater. Sol. Cells 93 1685
[36] Schubert M 1996 Phys. Rev. B 53 4265
[37] Wu X, Fu C and Zhang Z M 2019 Int. J. Heat. Mass. Transfer 135 1207
[38] Wu X, Su C, Shi K, Wu F and Fu C 2022 Eng. Sci. 19 273
[39] Wu X, Fu C and Zhang Z 2018 J. Photon. Energy 9 032702
[40] Sun Y, Wu B, Shi K, Shi Z and Wu X 2022 Eng. Sci. 20 157
[41] Wu X, Fu C and Zhang Z M 2020 J. Heat Transfer 142 072802
[42] Zhao B, Guizal B, Zhang Z M, Fan S and Antezza M 2017 Phys. Rev. B 95 245437
[43] Purcell E M, Torrey H C and Pound R V 1946 Phys. Rev. 69 37
[44] Ford G W and Weber W H 1984 Phys. Rep. 113 195
[45] Debu D T, Ladani F T, French D, Bauman S J and Herzog J B 2019 npj 2D Mater. Appl. 3 30
[46] Zhou K, Zhong X, Cheng Q and Wu X 2022 Opt. Mater. 131 112623
[1] Phonon resonance modulation in weak van der Waals heterostructures: Controlling thermal transport in graphene—silicon nanoparticle systems
Yi Li(李毅), Yinong Liu(刘一浓), and Shiqian Hu(胡世谦). Chin. Phys. B, 2024, 33(4): 047401.
[2] Spin-polarized pairing induced by the magnetic field in the Bernal bilayer graphene
Yan Huang(黄妍) and Tao Zhou(周涛). Chin. Phys. B, 2024, 33(4): 047403.
[3] Influence of substrate effect on near-field radiative modulator based on biaxial hyperbolic materials
Ruiyi Liu(刘睿一), Haotuo Liu(刘皓佗), Yang Hu(胡杨), Zheng Cui(崔峥), and Xiaohu Wu(吴小虎). Chin. Phys. B, 2024, 33(4): 044403.
[4] Effect of external magnetic field on the instability of THz plasma waves in nanoscale graphene field-effect transistors
Liping Zhang(张丽萍), Zongyao Sun(孙宗耀), Jiani Li(李佳妮), and Junyan Su(苏俊燕). Chin. Phys. B, 2024, 33(4): 048102.
[5] Enhanced resonance frequency in Co2FeAl thin film with different thicknesses grown on flexible graphene substrate
Cai Zhou(周偲), Shaokang Yuan(袁少康), Dengyu Zhu(朱登玉), Yuming Bai(白宇明), Tao Wang(王韬), Fufu Liu(刘福福), Lulu Pan(潘禄禄), Cunfang Feng(冯存芳), Bohan Zhang(张博涵), Daping He(何大平), and Shengxiang Wang(汪胜祥). Chin. Phys. B, 2024, 33(3): 037506.
[6] Light-modulated graphene-based φ0 Josephson junction and -φ0 to φ0 transition
Renxiang Cheng(程任翔), Miao Yu(于苗), Hong Wang(汪洪), Deliang Cao(曹德亮), Xingao Li(李兴鳌), Fenghua Qi(戚凤华), and Xingfei Zhou(周兴飞). Chin. Phys. B, 2024, 33(2): 027302.
[7] Valley transport in Kekulé structures of graphene
Juan-Juan Wang(王娟娟) and Jun Wang(汪军). Chin. Phys. B, 2024, 33(1): 017801.
[8] Valley filtering and valley-polarized collective modes in bulk graphene monolayers
Jian-Long Zheng(郑建龙) and Feng Zhai(翟峰). Chin. Phys. B, 2024, 33(1): 017203.
[9] Valley-dependent transport in a mescoscopic twisted bilayer graphene device
Wen-Xuan Shi(史文萱), Han-Lin Liu(刘翰林), and Jun Wang(汪军). Chin. Phys. B, 2024, 33(1): 017205.
[10] Emergence of correlations in twisted monolayer-trilayer graphene heterostructures
Zhang Zhou(周璋), Kenji Watanabe, Takashi Taniguchi, Xiao Lin(林晓), Jinhai Mao(毛金海), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2023, 32(9): 097203.
[11] Intercalation of hafnium oxide between epitaxially-grown monolayer graphene and Ir(111) substrate
Yi Biao(表奕), Hong-Liang Lu(路红亮), Hao Peng(彭浩), Zhi-Peng Song(宋志朋), Hui Guo(郭辉), and Xiao Lin(林晓). Chin. Phys. B, 2023, 32(9): 098102.
[12] Rashba spin-orbit coupling induced rectified currents in monolayer graphene with exchange field and sublattice potential
Liang Chen(陈亮), Feng Li(李峰), and Xiao-Ming Ding(丁晓明). Chin. Phys. B, 2023, 32(8): 087103.
[13] Controlled crossover of electron transport in graphene nanoconstriction: From Coulomb blockade to electron interference
Wei Yu(余炜), Xiao Guo(郭潇), Yuwen Cai(蔡煜文), Xiaotian Yu(俞晓天), and Wenjie Liang(梁文杰). Chin. Phys. B, 2023, 32(7): 077202.
[14] Probing photocarrier dynamics of pressurized graphene using time-resolved terahertz spectroscopy
Yunfeng Wang(王云峰), Shujuan Xu(许淑娟), Jin Yang(杨金), and Fuhai Su(苏付海). Chin. Phys. B, 2023, 32(6): 067802.
[15] Grand canonical Monte Carlo simulation study of hydrogen storage by Li-decorated pha-graphene
Meng-Meng Zhang(张蒙蒙), Feng Zhang(张凤), Qiang Wu(吴强), Xin Huang(黄欣), Wei Yan(闫巍),Chun-Mei Zhao(赵春梅), Wei Chen(陈伟), Zhi-Hong Yang(杨志红),Yun-Hui Wang(王允辉), and Ting-Ting Wu(武婷婷). Chin. Phys. B, 2023, 32(6): 066803.
No Suggested Reading articles found!