Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 058101    DOI: 10.1088/1674-1056/ad3034
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Regulating the dopant clustering in LiZnAs-based diluted magnetic semiconductor

Zihang Jia(贾子航)1, Bo Zhou(周波1,2,†, )1,2,‡, Zhenyi Jiang(姜振益)1,2,3,4,§
1 Institute of Modern Physics, Northwest University, Xi'an 710069, China;
2 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Northwest University, Xi'an 710069, China;
3 Department of Physics, Chinese University of Hong Kong, Hong Kong SAR, China;
4 Beijing Computational Science Research Center, Beijing 100193, China
Abstract  Tuning of the magnetic interaction plays the vital role in reducing the clustering of magnetic dopant in diluted magnetic semiconductors (DMS). Due to the not well understood magnetic mechanism and the interplay between different magnetic mechanisms, no efficient and universal tuning strategy is proposed at present. Here, the magnetic interactions and formation energies of isovalent-doped (Mn) and aliovalent (Cr)-doped LiZnAs are studied based on density functional theory (DFT). It is found that the dopant-dopant distance-dependent magnetic interaction is highly sensitive to the carrier concentration and carrier type and can only be explained by the interplay between two magnetic mechanisms, i.e., super-exchange and Zener's p-d exchange model. Thus, the magnetic behavior and clustering of magnetic dopant can be tuned by the interplay between two magnetic mechanisms. The insensitivity of the tuning effect to $U$ parameter suggests that our strategy could be universal to other DMS.
Keywords:  diluted magnetic semiconductor      dopant distribution      first-principles calculations  
Received:  09 December 2023      Revised:  17 January 2024      Accepted manuscript online: 
PACS:  81.70.Jb (Chemical composition analysis, chemical depth and dopant profiling)  
  75.50.Pp (Magnetic semiconductors)  
  63.20.dk (First-principles theory)  
Fund: Project supported by the Natural Science Foundation ofShaanxi Province of China (Grant No. 2013JQ1018), theNatural Science Foundation of Department of Education ofShaanxi Province of China (Grant No. 15JK1759) and theDouble First-class University Construction Project of Northwest University. The authors are grateful for the financialsupport of Chinese University of Hong Kong (CUHK) (GrantNo. 4053084), University Grants Committee of Hong Kong,China (Grant No. 24300814), and start-up funding of CUHK.
Corresponding Authors:  Bo Zhou,E-mail:zhoubo@nwu.edu.cn;Zhenyi Jiang,E-mail:jiangzhenyi@nwu.edu.cn;Xiaodong Zhang,E-mail:zhangxiaodong@nwu.edu.cn     E-mail:  zhoubo@nwu.edu.cn;jiangzhenyi@nwu.edu.cn;zhangxiaodong@nwu.edu.cn

Cite this article: 

Zihang Jia(贾子航), Bo Zhou(周波,), Zhenyi Jiang(姜振益), and Xiaodong Zhang(张小东) Regulating the dopant clustering in LiZnAs-based diluted magnetic semiconductor 2024 Chin. Phys. B 33 058101

[1] Zhao L, He R, Rim K T, Schiros T, Kim K S, Zhou H, Gutirrez C, Chockalingam S P, Arguello C J, Plov L, Nordlund D, Hybertsen M S, Reichman D R, Heinz T F, Kim P, Pinczuk A, Flynn G W and Pasupathy A N 2011 Science 333 999
[2] Aboy M, Santos I, Pelaz L, Marqués L A and López P 2014 J. Comput. Electron 13 40 Elect. 13 40, DOI:
[3] Blavette D and Duguay S 2016 J. Appl. Phys. 119 181502
[4] Boyle C J, Upadhyaya M, Wang P, Renna L A, Lu-Díaz M, Pyo Jeong S, Hight-Huf N, Korugic-Karasz L, Barnes M D, Aksamija Z and Venkataraman D 2019 Nat. Commun. 10 2827
[5] Lin L, Li J, Yuan Q, Li Q, Zhang J, Sun L, Rui D, Chen Z, Jia K, Wang M, Zhang Y, Rummeli M H, Kang N, Xu H Q, Ding F, Peng H and Liu Z 2019 Sci. Adv. 5 eaaw8337
[6] Yoshimura A, Koratkar N and Meunier V 2020 Nano Express 1 010008
[7] Chen J, Li J, Sun L, Lin Z, Hu Z, Zhang H, Wu X, Zhang D, Cheng G and Zheng R 2021 J. Ener. Chem. 59 736
[8] Smart T J, Baltazar V U, Chen M, Yao B, Mayford K, Bridges F, Li Y and Ping Y 2021 Chem. Mater. 33 4390
[9] Jang J, Kim J K, Shin J, Kim J, Baek K Y, Park J, Park S, Kim Y D, Parkin S S P, Kang K, Cho K and Lee T 2022 Sci. Adv. 8 eabn3181
[10] Hunnestad K A, Hatzoglou C, Khalid Z M, Vullum P E, Yan Z, Bourret E, van Helvoort A T J, Selbach S M and Meier D 2022 Nat. Commun. 13 4783
[11] Goldmann B A, Clarke M J, Dawson J A and Islam M S 2022 J. Mater. Chem. A 10 2249
[12] Lambie S, Steenbergen K G, Gaston N and Paulus B 2022 Phys. Chem. Chem. Phys. 24 98
[13] Zhang D B, Zhao X J, Seifert G, Tse K and Zhu J 2019 Nat. Sci. Rev. 6 532
[14] Mller L, Rhim S Y, Sivanesan V, Wang D, Hietzschold S, Reiser P, Mankel E, Beck S, Barlow S, Marder S R, Pucci A, Kowalsky W and Lovrincic R 2017 Adv. Mater. 29 1701466
[15] Kuroda S, Nishizawa N, Takita K, Mitome M, Bando Y, Osuch K and Dietl T 2007 Nat. Mater. 6 440
[16] Dalpian G M and Wei S H 2006 Phys. Status Solidi B 243 2170
[17] Zhang X, Zhang J, Tse K, Zhang S and Zhu J 2019 Phys. Rev. B 99 134435
[18] Mašek J, Kudrnovský J, Máca F, Gallagher B L, Campion R P, Gregory D H and Jungwirth T 2007 Phys. Rev. Lett. 98 067202
[19] Deng Z, Jin C Q, Liu Q Q, Wang X C, Zhu J L, Feng S M, Chen L C, Yu R C, Arguello C, Goko T, Ning F, Zhang J, Wang Y, Aczel A A, Munsie T, Williams T J, Luke G M, Kakeshita T, Uchida S, Higemoto W, Ito T U, Gu B, Maekawa S, Morris G D and Uemura Y J 2011 Nat. Commun. 2 422
[20] Ning F L, Man H, Gong X, Zhi G, Guo S, Ding C, Wang Q, Goko T, Liu L, Frandsen B A, Uemura Y J, Luetkens H, Morenzoni E, Jin C Q, Munsie T, Luke G M, Wang H and Chen B 2014 Phys. Rev. B 90 085123
[21] Zhao K, Deng Z, Wang X C, Han W, Zhu J L, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Ning F, Uemura Y J, Dabkowska H, Luke G M, Luetkens H, Morenzoni E, Dunsiger S R, Senyshyn A, Böni P and Jin C Q 2012 Nat. Commun. 4 1442
[22] Zhao K, Chen B, Zhao G, Yuan Z, Liu Q, Deng Z, Zhu J and Jin C 2014 Chin. Sci. Bull. 59 2524
[23] Chen B, Deng Z, Li W, Gao M, Zhao J, Zhao G, Yu S, Wang X, Liu Q and Jin C 2016 AIP Adv. 6 115014
[24] Gu B and Maekawa S 2017 AIP Adv. 7 055805
[25] Guo S, Man H, Wang K, Ding C, Zhao Y, Fu L, Gu Y, Zhi G, Frandsen B A, Cheung S C, Guguchia Z, Yamakawa K, Chen B, Wang H, Deng Z, Jin C Q, Uemura Y J and Ning F 2019 Phys. Rev. B 99 155201
[26] Wang Q, Man H, Ding C, Gong X, Guo S, Jin H, Wang H, Chen B and Ning F L 2014 J. Appl. Phys. 115 083917
[27] Tao H L, Lina L, Zhang Z H, He M and Song B 2016 Chem. Phys. Lett. 657 39
[28] Wang M, Zhang Z, He M, Tao H, Yang T, Song B and Lin L 2017 J. Super. Nov. Mag. 30 1545
[29] Wang M, Tao H, Cui Y, Liu S, He M, Song B, Jian J and Zhang Z 2021 Chem. Phys. Lett. 763 138212
[30] Sato K, Fujimoto S, Fujii H, Fukushima T and Katayama-Yoshida H 2012 Physica B 407 2950
[31] Blöchl P E 1994 Phys. Rev. B 50 17953
[32] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406
[33] Kresse G and Fürthmuller J 1996 Phys. Rev. B 54 11169
[34] Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J and Sutton A P 1998 Phys. Rev. B 57 1505
[35] Hönle W 1993 Zeitschrift fur Naturforschung. B, A J. Chem. Sci. 48 683
[36] Sato K, Bergqvist L, Kudrnovský J, Dederichs P H, Eriksson O, Turek I, Sanyal B, Bouzerar G, Katayama-Yoshida H, Dinh V A, Fukushima T, Kizaki H and Zeller R 2010 Rev. Mod. Phys. 82 1633
[37] Chan C, Zhang X, Zhang Y, Tse K, Deng B, Zhang J and Zhu J 2018 Chin. Phys. Lett. 35 017502
[38] Gong W, Leung C H, Sin C K, Zhang J, Zhang X, Xi B and Zhu J 2020 Chin. Phys. Lett. 37 027501
[39] Secchi A, Lichtenstein A and Katsnelson M 2016 Journal of Magnetism and Magnetic Materials 400 112
[40] Kvashnin Y O, Cardias R, Szilva A, Di Marco I, Katsnelson M I, Lichtenstein A I, Nordström L, Klautau A B and Eriksson O 2016 Phys. Rev. Lett. 116 217202
[41] Da Silva J L F, Dalpian G M and Wei S H 2008 New J. Phys. 10 113007
[42] Sun F, Zhao G Q, Escanhoela C A, Chen B J, Kou R H, Wang Y G, Xiao Y M, Chow P, Mao H K, Haskel D, Yang W G and Jin C Q 2017 Phys. Rev. B 95 094412
[43] Dietl T, Sato K, Fukushima T, Bonanni A, Jamet M, Barski A, Kuroda S, Tanaka M, Hai P N and Katayama-Yoshida H 2015 Rev. Mod. Phys. 87 1311
[1] Spin direction dependent quantum anomalous Hall effect in two-dimensional ferromagnetic materials
Yu-Xian Yang(杨宇贤) and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2024, 33(4): 047101.
[2] Optical spectrum of ferrovalley materials: A case study of Janus H-VSSe
Chao-Bo Luo(罗朝波), Wen-Chao Liu(刘文超), and Xiang-Yang Peng(彭向阳). Chin. Phys. B, 2024, 33(1): 016303.
[3] Design of sign-reversible Berry phase effect in 2D magneto-valley material
Yue-Tong Han(韩曰通), Yu-Xian Yang(杨宇贤), Ping Li(李萍), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(9): 097101.
[4] Quantum tunneling in the surface diffusion of single hydrogen atoms on Cu(001)
Xiaofan Yu(于小凡), Yangwu Tong(童洋武), and Yong Yang(杨勇). Chin. Phys. B, 2023, 32(8): 086801.
[5] Modulation of CO adsorption on 4,12,2-graphyne by Fe atom doping and applied electric field
Yu Dong(董煜), Zhi-Gang Shao(邵志刚), Cang-Long Wang(王苍龙), and Lei Yang(杨磊). Chin. Phys. B, 2023, 32(8): 087101.
[6] Structural, electronic, and Li-ion mobility properties of garnet-type Li7La3Zr2O12 surface: An insight from first-principles calculations
Jing-Xuan Wang(王靖轩), Bao-Zhen Sun(孙宝珍), Mei Li(李梅), Mu-Sheng Wu(吴木生), and Bo Xu(徐波). Chin. Phys. B, 2023, 32(6): 068201.
[7] Evaluating thermal expansion in fluorides and oxides: Machine learning predictions with connectivity descriptors
Yilin Zhang(张轶霖), Huimin Mu(穆慧敏), Yuxin Cai(蔡雨欣), Xiaoyu Wang(王啸宇), Kun Zhou(周琨), Fuyu Tian(田伏钰), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2023, 32(5): 056302.
[8] Room temperature quantum anomalous Hall insulator in honeycomb lattice, RuCS3, with large magnetic anisotropy energy
Yong-Chun Zhao(赵永春), Ming-Xin Zhu(朱铭鑫), Sheng-Shi Li(李胜世), and Ping Li(李萍). Chin. Phys. B, 2023, 32(5): 057301.
[9] Prediction of LiCrTe2 monolayer as a half-metallic ferromagnet with a high Curie temperature
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(5): 057505.
[10] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[11] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[12] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[13] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[14] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[15] Two-dimensional transition metal halide PdX2(X= F, Cl, Br, I): A promising candidate of bipolar magnetic semiconductors
Miao-Miao Chen(陈苗苗), Sheng-Shi Li(李胜世), Wei-Xiao Ji(纪维霄), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(12): 127103.
No Suggested Reading articles found!