Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(5): 050304    DOI: 10.1088/1674-1056/ad1927
GENERAL Prev   Next  

Ascertaining the influences of auxiliary qubits on the Einstein-Podolsky-Rosen steering and its directions

Ling-Ling Xing(邢玲玲), Huan Yang(杨欢)†, Gang Zhang(张刚)‡, and Min Kong(孔敏)
School of Electrical and Photoelectronic Engineering, West Anhui University, Lu'an 237012, China
Abstract  Einstein-Podolsky-Rosen (EPR) steering is an example of nontrivial quantum nonlocality and characteristic in the non-classical world. The directivity (or asymmetry) is a fascinating trait of EPR steering, and it is different from other quantum nonlocalities. Here, we consider the strategy in which two atoms compose a two-qubit X state, and the two atoms are owned by Alice and Bob, respectively. The atom of Alice suffers from a reservoir, and the atom of Bob couples with a bit flip channel. The influences of auxiliary qubits on EPR steering and its directions are revealed by means of the entropy uncertainty relation. The results indicate that EPR steering declines with growing time $t$ when adding fewer auxiliary qubits. The EPR steering behaves as damped oscillation when introducing more auxiliary qubits in the strong coupling regime. In the weak coupling regime, the EPR steering monotonously decreases as $t$ increases when coupling auxiliary qubits. The increases in auxiliary qubits are responsible for the fact that the steerability from Alice to Bob (or from Bob to Alice) can be more effectively revealed. Notably, the introductions of more auxiliary qubits can change the situation that steerability from Alice to Bob is certain to a situation in which steerability from Bob to Alice is certain.
Keywords:  auxiliary qubits      EPR steering      directions      influence  
Received:  07 November 2023      Revised:  27 December 2023      Accepted manuscript online:  28 December 2023
PACS:  03.67.-a (Quantum information)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12175001), the Key Project of Natural Science Research of West Anhui University (Grant No. WXZR202311), the Natural Science Research Key Project of Education Department of Anhui Province of China (Grant Nos. KJ2021A0943, 2022AH051681, and 2023AH052648), the Open Fund of Anhui Undergrowth Crop Intelligent Equipment Engineering Research Center (Grant No. AUCIEERC-2022-01), Anhui Undergrowth Crop Intelligent Equipment Engineering Research Center (Grant No. 2022AH010091), the University Synergy Innovation Program of Anhui Province (Grant No. GXXT-2021-026), the Anhui Provincial Natural Science Foundation (Grant Nos. 2108085MA18 and 2008085MA20), Key Project of Program for Excellent Young Talents of Anhui Universities (Grant No. gxyqZD2019042), the open project of the Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes (Grant No. FMDI202106), and the research start-up funding project of High Level Talent of West Anhui University (Grant No. WGKQ2021048).
Corresponding Authors:  Huan Yang, Gang Zhang     E-mail:  hyang@wxc.edu.cn;zhanggang@wxc.edu.cn

Cite this article: 

Ling-Ling Xing(邢玲玲), Huan Yang(杨欢), Gang Zhang(张刚), and Min Kong(孔敏) Ascertaining the influences of auxiliary qubits on the Einstein-Podolsky-Rosen steering and its directions 2024 Chin. Phys. B 33 050304

[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Schrödinger E 1935 Math. Proc. Cambridge Philos. Soc. 31 555
[3] Uola R, Costa A C S, Nguyen H C and Guhne O 2020 Rev. Mod. Phys. 92 015001
[4] Wiseman H M, Jones S J and Doherty A C 2007 Phys. Rev. Lett. 98 140402
[5] Zhen Y Z, Zheng Y L, Cao W F, Li L, Chen Z B, Liu N L and Chen K 2016 Phys. Rev. A 93 012108
[6] Cavalcanti E G, Jones S J, Wiseman H M and Reid M D 2009 Phys. Rev. A 80 032112
[7] Costa A C S and Angelo R M 2016 Phys. Rev. A 93 020103
[8] Zukowski M, Dutta A and Yin Z 2015 Phys. Rev. A 91 032107
[9] Li J, Wang C Y, Liu T J and Wang Q 2018 Phys. Rev. A 97 032107
[10] Walborn S P, Salles A, Gomes R M, Toscano F and Souto Ribeiro P H 2011 Phys. Rev. Lett. 106 130402
[11] Schneeloch J, Broadbent C J, Walborn S P, Cavalcanti E G and Howell J C 2013 Phys. Rev. A 87 062103
[12] Costa A C S, Uola R and Gühne O 2018 Phys. Rev. A 98 050104
[13] Kriváchy T, Fröwis F and Brunner N 2018 Phys. Rev. A 98 062111
[14] Wollmann S, Uola R and Costa A C S 2020 Phys. Rev. Lett. 125 020404
[15] Zhao F, Yang H, Song X K, Wang D and Ye L 2021 Phys. Rev. A 104 052425
[16] Yang H, Ding Z Y, Wang D, Yuan H, Song X K, Yang J, Zhang C J and Ye L 2020 Phys. Rev. A 101 022324
[17] Wang Y, Hao Z Y, Li J K, Liu Z H, Sun K, Xu J S, Li C F and Guo G C 2023 Phys. Rev. Lett. 130 200202
[18] Guo J, Sun F X, Zhu D, Gessner M, He Q and Fadel M 2023 Phys. Rev. A 108 012435
[19] Liu Y, Cai Y, Luo B, Yan Y, Niu M, Li F and Zhang Y 2021 Phys. Rev. A 104 033704
[20] Ming F, Song X K, Ling J, Ye L and Wang D 2020 Eur. Phys. J. C 80 275
[21] Yang H, Xing L L, Ding Z Y, Zhang G and Ye L 2022 Chin. Phys. B 31 090302
[22] Liu S, Han D, Wang N, Xiang Y, Sun F, Wang M, Qin Z, Gong Q, Su X and He Q 2023 Phys. Rev. Lett. 128 200401
[23] Zhu J, Hu M J, Li C F, Guo G C and Zhang Y S 2022 Phys. Rev. A 105 032211
[24] Wang M, Xiang Y, Kang H, Han D, Liu Y, He Q, Gong Q, Su X and Peng K 2020 Phys. Rev. Lett. 125 260506
[25] Cai Y, Xiang Y, Liu Y, He Q and Treps N 2020 Phys. Rev. Res. 2 032046
[26] Yang H, Ding Z Y, Wang D, Yuan H, Song X K, Yang J, Zhang C J and Ye L 2020 Phys. Rev. A 101 042115
[27] Yang H, Zhao F, Fan X G, Ding Z Y, Wang D, Song X K, Yuan H, Zhang C J and Ye L 2021 Opt. Express 29 26822
[28] Yang H, Ding Z Y, Song X K, Yuan H, Wang D, Yang J, Zhang C J and Ye L 2021 Phys. Rev. A 103 022207
[29] Xiao Y, Ye X J, Sun K, Xu J S, Li C F and Guo G C 2017 Phys. Rev. Lett. 118 140404
[30] Zheng Z, Yao M, Tong J, Lin Q and Cai Y 2023 Phys. Rev. A 108 012430
[31] Zhang M, Long Y, Zhao S and Zhang X 2022 Phys. Rev. A 105 042435
[32] Zeng Q 2022 Phys. Rev. A 106 032202
[33] Liao C G, Xie H, Chen R X, Ye M Y and Lin X M 2020 Phys. Rev. A 101 032120
[34] Yang Z B, Liu X D, Yin X Y, Ming Y, Liu H Y and Yang R C 2021 Phys. Rev. Appl. 15 024042
[35] Huang X, Zeuthen E, Gong Q and He Q 2019 Phys. Rev. A 100 012318
[36] Maleki Y and Ahansaz B 2020 Phys. Rev. A 102 020402
[37] Xu X X and Hu M L 2022 Ann. Phys. (Berlin) 534 2100412
[38] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[39] Sun W Y, Wang D and Ye L 2017 Laser Phys. Lett. 14 095205
[40] Wu S M and Zeng H S 2022 Eur. Phys. J. C 82 716
[1] Influencer identification of dynamical networks based on an information entropy dimension reduction method
Dong-Li Duan(段东立), Si-Yuan Ji(纪思源), and Zi-Wei Yuan(袁紫薇). Chin. Phys. B, 2024, 33(4): 040502.
[2] Identifying influential spreaders in social networks: A two-stage quantum-behaved particle swarm optimization with Lévy flight
Pengli Lu(卢鹏丽), Jimao Lan(揽继茂), Jianxin Tang(唐建新), Li Zhang(张莉), Shihui Song(宋仕辉), and Hongyu Zhu(朱虹羽). Chin. Phys. B, 2024, 33(1): 018901.
[3] Identifying multiple influential spreaders in complex networks based on spectral graph theory
Dong-Xu Cui(崔东旭), Jia-Lin He(何嘉林), Zi-Fei Xiao(肖子飞), and Wei-Ping Ren(任卫平). Chin. Phys. B, 2023, 32(9): 098904.
[4] Robustness of community networks against cascading failures with heterogeneous redistribution strategies
Bo Song(宋波), Hui-Ming Wu(吴惠明), Yu-Rong Song(宋玉蓉), Guo-Ping Jiang(蒋国平),Ling-Ling Xia(夏玲玲), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(9): 098905.
[5] AIGCrank: A new adaptive algorithm for identifying a set of influential spreaders in complex networks based on gravity centrality
Ping-Le Yang(杨平乐), Lai-Jun Zhao(赵来军), Chen Dong(董晨),Gui-Qiong Xu(徐桂琼), and Li-Xin Zhou(周立欣). Chin. Phys. B, 2023, 32(5): 058901.
[6] SLGC: Identifying influential nodes in complex networks from the perspectives of self-centrality, local centrality, and global centrality
Da Ai(艾达), Xin-Long Liu(刘鑫龙), Wen-Zhe Kang(康文哲), Lin-Na Li(李琳娜), Shao-Qing Lü(吕少卿), and Ying Liu(刘颖). Chin. Phys. B, 2023, 32(11): 118902.
[7] Influence fast or later: Two types of influencers in social networks
Fang Zhou(周方), Chang Su(苏畅), Shuqi Xu(徐舒琪), and Linyuan Lü(吕琳媛). Chin. Phys. B, 2022, 31(6): 068901.
[8] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[9] Space symmetry of effective physical constants for biaxial crystals
Fuan Liu(刘孚安), Zeliang Gao(高泽亮), XinYin(尹鑫), and Xutang Tao(陶绪堂). Chin. Phys. B, 2021, 30(2): 026104.
[10] Characterization and optimization of AlGaN/GaN metal-insulator semiconductor heterostructure field effect transistors using supercritical CO2/H2O technology
Meihua Liu(刘美华), Zhangwei Huang(黄樟伟), Kuan-Chang Chang(张冠张), Xinnan Lin(林信南), Lei Li(李蕾), and Yufeng Jin(金玉丰). Chin. Phys. B, 2020, 29(12): 127101.
[11] Acquisition performance analysis for intersatellite optical communications with vibration influence
Jing Ma(马晶), Gaoyuan Lu(陆高原), Siyuan Yu(于思源), Liying Tan(谭立英), Yulong Fu(付玉龙), Fajun Li(黎发军). Chin. Phys. B, 2020, 29(1): 014205.
[12] Influence of obstacle on electromagnetic wave propagation in evaporation duct with experiment verification
Shi Yang (史阳), Yang Kun-De (杨坤德), Yang Yi-Xin (杨益新), Ma Yuan-Liang (马远良). Chin. Phys. B, 2015, 24(5): 054101.
[13] Rapid identifying high-influence nodes in complex networks
Song Bo (宋波), Jiang Guo-Ping (蒋国平), Song Yu-Rong (宋玉蓉), Xia Ling-Ling (夏玲玲). Chin. Phys. B, 2015, 24(10): 100101.
[14] Impact of user influence on information multi-step communication in micro-blog
Wu Yue (吴越), Hu Yong (胡勇), He Xiao-Hai (何小海), Deng Ken (邓垦). Chin. Phys. B, 2014, 23(6): 060101.
[15] Influence of annealing conditions on impurity species in arsenic-doped HgCdTe grown by molecular beam epitaxy
Yue Fang-Yu(越方禹), Chen Lu(陈璐), Li Ya-Wei(李亚巍), Hu Zhi-Gao(胡志高), Sun Lin(孙琳), Yang Ping-Xiong(杨平雄), and Chu Jun-Hao(褚君浩). Chin. Phys. B, 2010, 19(11): 117106.
No Suggested Reading articles found!