|
|
Ascertaining the influences of auxiliary qubits on the Einstein-Podolsky-Rosen steering and its directions |
Ling-Ling Xing(邢玲玲), Huan Yang(杨欢)†, Gang Zhang(张刚)‡, and Min Kong(孔敏) |
School of Electrical and Photoelectronic Engineering, West Anhui University, Lu'an 237012, China |
|
|
Abstract Einstein-Podolsky-Rosen (EPR) steering is an example of nontrivial quantum nonlocality and characteristic in the non-classical world. The directivity (or asymmetry) is a fascinating trait of EPR steering, and it is different from other quantum nonlocalities. Here, we consider the strategy in which two atoms compose a two-qubit X state, and the two atoms are owned by Alice and Bob, respectively. The atom of Alice suffers from a reservoir, and the atom of Bob couples with a bit flip channel. The influences of auxiliary qubits on EPR steering and its directions are revealed by means of the entropy uncertainty relation. The results indicate that EPR steering declines with growing time $t$ when adding fewer auxiliary qubits. The EPR steering behaves as damped oscillation when introducing more auxiliary qubits in the strong coupling regime. In the weak coupling regime, the EPR steering monotonously decreases as $t$ increases when coupling auxiliary qubits. The increases in auxiliary qubits are responsible for the fact that the steerability from Alice to Bob (or from Bob to Alice) can be more effectively revealed. Notably, the introductions of more auxiliary qubits can change the situation that steerability from Alice to Bob is certain to a situation in which steerability from Bob to Alice is certain.
|
Received: 07 November 2023
Revised: 27 December 2023
Accepted manuscript online: 28 December 2023
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.65.Ud
|
(Entanglement and quantum nonlocality)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12175001), the Key Project of Natural Science Research of West Anhui University (Grant No. WXZR202311), the Natural Science Research Key Project of Education Department of Anhui Province of China (Grant Nos. KJ2021A0943, 2022AH051681, and 2023AH052648), the Open Fund of Anhui Undergrowth Crop Intelligent Equipment Engineering Research Center (Grant No. AUCIEERC-2022-01), Anhui Undergrowth Crop Intelligent Equipment Engineering Research Center (Grant No. 2022AH010091), the University Synergy Innovation Program of Anhui Province (Grant No. GXXT-2021-026), the Anhui Provincial Natural Science Foundation (Grant Nos. 2108085MA18 and 2008085MA20), Key Project of Program for Excellent Young Talents of Anhui Universities (Grant No. gxyqZD2019042), the open project of the Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutes (Grant No. FMDI202106), and the research start-up funding project of High Level Talent of West Anhui University (Grant No. WGKQ2021048). |
Corresponding Authors:
Huan Yang, Gang Zhang
E-mail: hyang@wxc.edu.cn;zhanggang@wxc.edu.cn
|
Cite this article:
Ling-Ling Xing(邢玲玲), Huan Yang(杨欢), Gang Zhang(张刚), and Min Kong(孔敏) Ascertaining the influences of auxiliary qubits on the Einstein-Podolsky-Rosen steering and its directions 2024 Chin. Phys. B 33 050304
|
[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777 [2] Schrödinger E 1935 Math. Proc. Cambridge Philos. Soc. 31 555 [3] Uola R, Costa A C S, Nguyen H C and Guhne O 2020 Rev. Mod. Phys. 92 015001 [4] Wiseman H M, Jones S J and Doherty A C 2007 Phys. Rev. Lett. 98 140402 [5] Zhen Y Z, Zheng Y L, Cao W F, Li L, Chen Z B, Liu N L and Chen K 2016 Phys. Rev. A 93 012108 [6] Cavalcanti E G, Jones S J, Wiseman H M and Reid M D 2009 Phys. Rev. A 80 032112 [7] Costa A C S and Angelo R M 2016 Phys. Rev. A 93 020103 [8] Zukowski M, Dutta A and Yin Z 2015 Phys. Rev. A 91 032107 [9] Li J, Wang C Y, Liu T J and Wang Q 2018 Phys. Rev. A 97 032107 [10] Walborn S P, Salles A, Gomes R M, Toscano F and Souto Ribeiro P H 2011 Phys. Rev. Lett. 106 130402 [11] Schneeloch J, Broadbent C J, Walborn S P, Cavalcanti E G and Howell J C 2013 Phys. Rev. A 87 062103 [12] Costa A C S, Uola R and Gühne O 2018 Phys. Rev. A 98 050104 [13] Kriváchy T, Fröwis F and Brunner N 2018 Phys. Rev. A 98 062111 [14] Wollmann S, Uola R and Costa A C S 2020 Phys. Rev. Lett. 125 020404 [15] Zhao F, Yang H, Song X K, Wang D and Ye L 2021 Phys. Rev. A 104 052425 [16] Yang H, Ding Z Y, Wang D, Yuan H, Song X K, Yang J, Zhang C J and Ye L 2020 Phys. Rev. A 101 022324 [17] Wang Y, Hao Z Y, Li J K, Liu Z H, Sun K, Xu J S, Li C F and Guo G C 2023 Phys. Rev. Lett. 130 200202 [18] Guo J, Sun F X, Zhu D, Gessner M, He Q and Fadel M 2023 Phys. Rev. A 108 012435 [19] Liu Y, Cai Y, Luo B, Yan Y, Niu M, Li F and Zhang Y 2021 Phys. Rev. A 104 033704 [20] Ming F, Song X K, Ling J, Ye L and Wang D 2020 Eur. Phys. J. C 80 275 [21] Yang H, Xing L L, Ding Z Y, Zhang G and Ye L 2022 Chin. Phys. B 31 090302 [22] Liu S, Han D, Wang N, Xiang Y, Sun F, Wang M, Qin Z, Gong Q, Su X and He Q 2023 Phys. Rev. Lett. 128 200401 [23] Zhu J, Hu M J, Li C F, Guo G C and Zhang Y S 2022 Phys. Rev. A 105 032211 [24] Wang M, Xiang Y, Kang H, Han D, Liu Y, He Q, Gong Q, Su X and Peng K 2020 Phys. Rev. Lett. 125 260506 [25] Cai Y, Xiang Y, Liu Y, He Q and Treps N 2020 Phys. Rev. Res. 2 032046 [26] Yang H, Ding Z Y, Wang D, Yuan H, Song X K, Yang J, Zhang C J and Ye L 2020 Phys. Rev. A 101 042115 [27] Yang H, Zhao F, Fan X G, Ding Z Y, Wang D, Song X K, Yuan H, Zhang C J and Ye L 2021 Opt. Express 29 26822 [28] Yang H, Ding Z Y, Song X K, Yuan H, Wang D, Yang J, Zhang C J and Ye L 2021 Phys. Rev. A 103 022207 [29] Xiao Y, Ye X J, Sun K, Xu J S, Li C F and Guo G C 2017 Phys. Rev. Lett. 118 140404 [30] Zheng Z, Yao M, Tong J, Lin Q and Cai Y 2023 Phys. Rev. A 108 012430 [31] Zhang M, Long Y, Zhao S and Zhang X 2022 Phys. Rev. A 105 042435 [32] Zeng Q 2022 Phys. Rev. A 106 032202 [33] Liao C G, Xie H, Chen R X, Ye M Y and Lin X M 2020 Phys. Rev. A 101 032120 [34] Yang Z B, Liu X D, Yin X Y, Ming Y, Liu H Y and Yang R C 2021 Phys. Rev. Appl. 15 024042 [35] Huang X, Zeuthen E, Gong Q and He Q 2019 Phys. Rev. A 100 012318 [36] Maleki Y and Ahansaz B 2020 Phys. Rev. A 102 020402 [37] Xu X X and Hu M L 2022 Ann. Phys. (Berlin) 534 2100412 [38] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) [39] Sun W Y, Wang D and Ye L 2017 Laser Phys. Lett. 14 095205 [40] Wu S M and Zeng H S 2022 Eur. Phys. J. C 82 716 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|