Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 034207    DOI: 10.1088/1674-1056/ad12aa
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Generation of orbital angular momentum hologram using a modified U-net

Zhi-Gang Zheng(郑志刚)1, Fei-Fei Han(韩菲菲)1, Le Wang(王乐)1, and Sheng-Mei Zhao(赵生妹)1,2,3,†
1 Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 Key Laboratory of Broadband Wireless Communication and Sensor Network Technology (Ministry of Education), Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
3 National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
Abstract  Orbital angular momentum (OAM) holography has become a promising technique in information encryption, data storage and opto-electronic computing, owing to the infinite topological charge of one single OAM mode and the orthogonality of different OAM modes. In this paper, we propose a novel OAM hologram generation method based on a densely connected U-net (DCU), where the densely connected convolution blocks (DCB) replace the convolution blocks of the U-net. Importantly, the reconstruction process of the OAM hologram is integrated into DCU as its output layer, so as to eliminate the requirement to prepare training data for the OAM hologram, which is required by conventional neural networks through an iterative algorithm. The experimental and simulation results show that the OAM hologram can rapidly be generated with the well-trained DCU, and the reconstructed image's quality from the generated OAM hologram is significantly improved in comparison with those from the Gerchberg-Saxton generation method, the Gerchberg-Saxton based generation method and the U-net method. In addition, a 10-bit OAM multiplexing hologram scheme is numerically demonstrated to have a high capacity with OAM hologram.
Keywords:  orbital angular momentum (OAM)      holography      OAM holography      deep learning  
Received:  29 October 2023      Revised:  04 December 2023      Accepted manuscript online:  06 December 2023
PACS:  42.40.-i (Holography)  
  42.50.Tx (Optical angular momentum and its quantum aspects)  
  42.79.Sz (Optical communication systems, multiplexers, and demultiplexers?)  
  84.35.+i (Neural networks)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 62375140 and 61871234) and the Open Research Fund of National Laboratory of Solid State Microstructures (Grant No. M36055).
Corresponding Authors:  Sheng-Mei Zhao     E-mail:  zhaosm@njupt.edu.cn

Cite this article: 

Zhi-Gang Zheng(郑志刚), Fei-Fei Han(韩菲菲), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹) Generation of orbital angular momentum hologram using a modified U-net 2024 Chin. Phys. B 33 034207

[1] Allen L, Beijersbergen M W, Spreeuw R J C and Woerdman J P 1992 Phys. Rev. A 45 8185
[2] Willner A E, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery M P J, Tur M, Ramachandran S, Molisch A F, Ashrafi N and Ashrafi S 2015 Adv. Opt. Photon. 7 66
[3] Zou L, Wang L, Zhao S M and Chen W W 2016 Chin. Phys. B 25 114215
[4] Zhan H C, Chen B, Peng Y X, Wang L, Wang W N and Zhao S M 2023 Chin. Phys. B 32 044208
[5] Ji J Y, Zheng Z G, Zhu J L, Wang L, Wang X G and Zhao S M 2023 Chin. Phys. B
[6] Zhu J L, Wang L, Ji J Y and Zhao S M 2022 Appl. Phys. Lett. 120 251104
[7] Mair A, Vaziri A, Weihs G and Zeilinger A 2001 Nature 412 313
[8] Fickler R, Lapkiewicz R, Plick N W, Krenn M, Schaeff C, Ramelow S and Zeilinger A 2012 Science 338 6107
[9] Fickler R, Campbell G, Buchler B, Ping K L and Zeilinger A 2016 PANS 113 13642
[10] Fang X Y, Ren H R and Gu M 2020 Nat. Photon. 14 102
[11] Ren H, Briere G, Fang X, Ni P, Sawant R, Heron S, Chenot S, Vezian S, Damilano B, Brandli V and Genevet P 2019 Nat. Commun. 10 2986
[12] Zhou H Q, Wang Y T, Li X, Xu Z T, Li X and Huang L L 2021 Appl. Phys. Lett. 119 044104
[13] Gerchberg R W 1972 Optik 35 237
[14] Wu Y, Wang J, Chen C, Liu C J, Jin F M and Chen N 2021 Opt. Express 29 1412
[15] Chang C L, Xia J, Yang L, Lei W, Yang Z M and Chen J H 2015 Appl. Opt. 54 6994
[16] Shimobaba T and Ito T 2015 Opt. Express 23 9549
[17] Cruz M L 2019 Appl. Opt. 58 1917
[18] LeCun Y, Bengio Y and Hinton G 2015 Nature 521 436
[19] Lucas A, Iliadis M, Molina R and Katsaggelos A K 2018 IEEE Signal Processing Mag. 35 20
[20] Yin D, Gu Z, Zhang Y, Gu F, Nie S, Feng S and Yuan C 2020 Opt. Lasers Eng. 133 106151
[21] Sun X H, Mu X Y, Xu C, Pang H, Deng Q L, Zhang K, Jiang H B, Du J L, Yin S Y and Du C L 2022 Opt. Express 30 2646
[22] Ishii Y, Shimobaba T, Blinder D, Birnbaum T, Schelkens P, Kakue T and Ito T 2022 Appl. Phys. B 128 22
[23] Ronneberger O, Fische P and Brox T 2015 International Conference on Medical Image Computing and Computer-assisted Intervention, Cham, p. 234
[24] Zhang G, Guan T, Shen Z Y, Wang X N, Hu T, Wang D L, He Y H and Xie N 2018 Opt. Express 26 19388
[25] Siddique N, Paheding S, Elkin C P and Devabhaktuni V 2021 IEEE Access 9 82031
[26] Huang G, Liu Z, Van D M L and Weinberger K Q 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) July, 2017, p. 4700
[27] Hore A and Ziou D 2010 International Conference on Pattern Recognition, August 23-26, 2010, Istanbul, Turkey, p. 2366
[28] Xia P, Zhang L and Li F 2012 Inf. Sci. 307 39
[29] Deng L 2012 IEEE Signal Processing Mag. 29 141
[30] Xiao H, Rasul K and Vollgraf R 2017 arXiv: 1708.07747 [cs.LG]
[31] Kuzmenko A, Iezhov P and Kim J 2011 Digital Holography and Three-Dimensional Imaging. DTuC37
[32] Chen L Z, Zhang H, He Z, Wang X Y, Cao L C and Jin G F 2020 Appl. Sci. 10 3652
[1] Accelerated generation of holograms with ultra-low memory symmetrically high-compressed look-up table
Yan Yang(杨燕), Jianying Zhu(朱建英), Minyuan Sun(孙敏远), and Yong Bi(毕勇). Chin. Phys. B, 2024, 33(4): 044201.
[2] Image segmentation of exfoliated two-dimensional materials by generative adversarial network-based data augmentation
Xiaoyu Cheng(程晓昱), Chenxue Xie(解晨雪), Yulun Liu(刘宇伦), Ruixue Bai(白瑞雪), Nanhai Xiao(肖南海), Yanbo Ren(任琰博), Xilin Zhang(张喜林), Hui Ma(马惠), and Chongyun Jiang(蒋崇云). Chin. Phys. B, 2024, 33(3): 030703.
[3] A deep learning method based on prior knowledge with dual training for solving FPK equation
Denghui Peng(彭登辉), Shenlong Wang(王神龙), and Yuanchen Huang(黄元辰). Chin. Phys. B, 2024, 33(1): 010202.
[4] Bessel—Gaussian beam-based orbital angular momentum holography
Jiaying Ji(季佳滢), Zhigang Zheng(郑志刚), Jialong Zhu(朱家龙), Le Wang(王乐), Xinguang Wang(王新光), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2024, 33(1): 014204.
[5] Classification and structural characteristics of amorphous materials based on interpretable deep learning
Jiamei Cui(崔佳梅), Yunjie Li(李韵洁), Cai Zhao(赵偲), and Wen Zheng(郑文). Chin. Phys. B, 2023, 32(9): 096101.
[6] Crysformer: An attention-based graph neural network for properties prediction of crystals
Tian Wang(王田), Jiahui Chen(陈家辉), Jing Teng(滕婧), Jingang Shi(史金钢),Xinhua Zeng(曾新华), and Hichem Snoussi. Chin. Phys. B, 2023, 32(9): 090703.
[7] Disruption prediction based on fusion feature extractor on J-TEXT
Wei Zheng(郑玮), Fengming Xue(薛凤鸣), Zhongyong Chen(陈忠勇), Chengshuo Shen(沈呈硕), Xinkun Ai(艾鑫坤), Yu Zhong(钟昱), Nengchao Wang(王能超), Ming Zhang(张明),Yonghua Ding(丁永华), Zhipeng Chen(陈志鹏), Zhoujun Yang(杨州军), and Yuan Pan(潘垣). Chin. Phys. B, 2023, 32(7): 075203.
[8] Modeling differential car-following behavior under normal and rainy conditions: A memory-based deep learning method with attention mechanism
Hai-Jian Bai(柏海舰), Chen-Chen Guo(过晨晨), Heng Ding(丁恒), Li-Yang Wei(卫立阳), Ting Sun(孙婷), and Xing-Yu Chen(陈星宇). Chin. Phys. B, 2023, 32(6): 060507.
[9] Extension of sound field reconstruction based on element radiation superposition method in a sparsity framework
Yuan Gao(高塬), Bo-Quan Yang(杨博全), Sheng-Guo Shi(时胜国), and Hao-Yang Zhang(张昊阳). Chin. Phys. B, 2023, 32(4): 044302.
[10] Tailoring OAM spectrum of high-order harmonic generation driven by two mixed Laguerre-Gaussian beams with nonzero radial nodes
Beiyu Wang(汪倍羽), Jiaxin Han(韩嘉鑫), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(12): 124208.
[11] Multi-channel generation of vortex beams with controllable polarization states and orbital angular momentum
Ziyao Lyu(吕子瑶), Pan Wang(王潘), and Changshun Wang(王长顺). Chin. Phys. B, 2023, 32(12): 124209.
[12] Inatorial forecasting method considering macro and micro characteristics of chaotic traffic flow
Yue Hou(侯越), Di Zhang(张迪), Da Li(李达), and Ping Yang(杨萍). Chin. Phys. B, 2023, 32(10): 100508.
[13] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[14] Development of an electronic stopping power model based on deep learning and its application in ion range prediction
Xun Guo(郭寻), Hao Wang(王浩), Changkai Li(李长楷),Shijun Zhao(赵仕俊), Ke Jin(靳柯), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(7): 073402.
[15] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
No Suggested Reading articles found!