Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(8): 083103    DOI: 10.1088/1674-1056/acd624
DATA PAPER Prev   Next  

Mutual neutralization in low-energy collisions of Na+ + H- ions

Kun Wang(王堃)1, Chuan Dong(董川)1, Yizhi Qu(屈一至)2,†, Yong Wu(吴勇)3, Xiaohe Lin(林晓贺)4,‡, and Robert J. Buenker5
1. Institute of Environmental Science, Shanxi University, Taiyuan 030006, China;
2. College of Material Sciences and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
3. National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
4. Faculty of Foundation, Space Engineering University, Beijing 101416, China;
5. Fachbereich C-Mathematik und Naturwissenschaften, Bergische Universitat Wuppertal, D-42097 Wuppertal, Germany
Abstract  The low-energy mutual neutralization (MN) reactions Na+ + H- →Na(nl) + H have been studied by employing the full quantum-mechanical molecular-orbital close-coupling (QMOCC) method over a wide energy range of 10-3-103 eV/u. Total and state-selective cross sections have been investigated and compared with the available theoretical and experimental data, and the state-selective rate coefficients for the temperature range of 100-10000 K have been obtained. In the present work, all the necessary highly excited states are included, and the influences of rotational couplings and 10 active electrons are considered. It is found that in the energy below 10 eV/u, the Na(4s) state is the most dominant exit state with a contribution of approximately 78% to the branch fraction, which is in best agreement with the experimental data. For energies above 10 eV/u, the MN total cross section is larger than those obtained in other theoretical calculations and shows a slow decreasing trend because the main exit states change, when the energy is above 100 eV/u, the dominant exit state becomes the Na(3p) state, while the Na(4s) state becomes the third most important exit state. The datasets presented in this paper, including the potential energy curve, the radial and rotational couplings, the total and state-selective cross sections, are openly available at https://doi.org/10.57760/sciencedb.j00113.00112.
Keywords:  mutual neutralization      cross section      rate coefficient      quantum-mechanical molecular-orbital close-coupling (QMOCC) method  
Received:  21 April 2023      Revised:  15 May 2023      Accepted manuscript online:  17 May 2023
PACS:  31.15.A- (Ab initio calculations)  
  34.70.+e (Charge transfer)  
  34.20.-b (Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.12204288, 11934004,and 12203106).
Corresponding Authors:  Yizhi Qu, Xiaohe Lin     E-mail:  yzqu@ucas.ac.cn;xiaohelin1989@163.com

Cite this article: 

Kun Wang(王堃), Chuan Dong(董川), Yizhi Qu(屈一至), Yong Wu(吴勇), Xiaohe Lin(林晓贺), and Robert J. Buenker Mutual neutralization in low-energy collisions of Na+ + H- ions 2023 Chin. Phys. B 32 083103

[1] Fantz U and Wünderlich D 2006 New J. Phys. 8 301
[2] Fantz U, Franzen P and Wünderlich D 2012 Chem. Phys. 398 7
[3] Bacal M, Michaut C, Elizarov L I and Balghiti F E 1996 Rev. Sci. Instrum. 67 1138
[4] Barklem P S, Belyaev A K and Asplund M 2003 Astronomy & Astrophysics 409 L1
[5] Nissen P E and Gustafsson B 2018 The Astronomy and Astrophysics Review 26 6
[6] Barklem P S, Belyaev A K, Dickinson A S and Gadéa F X 2010 Astronomy & Astrophysics 519 A20
[7] Eklund G, Grumer J, Barklem P S, Rosén S, Ji M, Simonsson A, Thomas R D, Cederquist H, Zettergren H and Schmidt H T 2021 Phys. Rev. A 103 032814
[8] Janev R K, Reiter D and Samm U 2003 Collision processes in low-temperature hydrogen plasmas, Vol. 4105 (Forschungszentrum, Zentralbibliothek Jülich)
[9] Dickinson A S, Poteau R and Gadéa F X 1999 J. Phys. B: Atom. Mol. Opt. Phys. 32 5451
[10] Olson R E, Smith F T and Bauer E 1971 Appl. Opt. 10 1848
[11] Janev R K and Radulović Z M 1978 Phys. Rev. A 17 889
[12] Barklem P S 2016 Phys. Rev. A 93 042705
[13] Olson R E and Kimura M 1985 Phys. Rev. A 32 3092
[14] Errea L F, Méndez L, Mó O and Riera A 1986 J. Chem. Phys. 84 147
[15] Chen Y H, Zhang B W, Zhang C R, Zhang M L, Kang L and Luo Y C 2014 Chin. Phys. Lett. 31 063101
[16] Gu C, Jin R, Zeng D L, Yue X F, Gao X and Li J M 2016 Chin. Phys. Lett. 33 043201
[17] Buenker R J and Phillips R A 1985 Journal of Molecular Structure: THEOCHEM 123 291
[18] Krebs S and Buenker R J 1995 J. Chem. Phys. 103 5613
[19] Pacios L F and Christiansen P A 1985 J. Chem. Phys. 82 2664
[20] Dunning T H 1989 J. Chem. Phys. 90 1007
[21] Kramida A, Ralchenko, Yu, Reader J and NIST ASD Team NIST Atomic Spectra Database (ver. 5.5.1), [Online]. Available: https://physics.nist.gov/asd [2017, April 2023]. National Institute of Standards and Technology, Gaithersburg, MD
[22] Herrero B, Cooper I L and Dickinson A S 1996 J. Phys. B: Atom. Mol. Opt. Phys. 29 5583
[23] Hirsch G, Bruna P J, Buenker R J and Peyerimhoff S D 1980 Chemical Physics 45 335
[24] Yakovleva S A, Barklem P S and Belyaev A K 2018 Monthly Notices of the Royal Astronomical Society 473 3810
[25] Bacchus-Montabonel M C and Ceyzeriat P 1998 Phys. Rev. A 58 1162
[26] Errea L F, Mendez L and Riera A 1982 J. Phys. B: Atom. Mol. Phys. 15 101
[27] Wang X X, Wang K, Peng Y G, Liu C H, Liu L, Wu Y, Liebermann H P, Buenker R J and Qu Y Z 2021 Research in Astronomy and Astrophysics 21 210
[28] Wang K, Qu Y Z, Liu C H, Liu L, Wu Y, Liebermann H P and Buenker R J 2019 J. Phys. B: Atom. Mol. Opt. Phys. 52 075202
[29] Barklem P S, Amarsi A M, Grumer J, Eklund G, Rosén S, Ji M, Cederquist H, Zettergren H and Schmidt H T 2021 The Astrophysical Journal 908 245
[30] Peart B and Hayton D A 1994 J. Phys. B: Atom. Mol. Opt. Phys. 27 2551
[31] Belyaev A K, Lepetit B and Gadéa F X 2014 Phys. Rev. A 90 062701
[1] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[2] State-to-state integral cross sections and rate constants for the N+(3P)+HD→NH+/ND++D/H reaction: Accurate quantum dynamics studies
Hanghang Chen(陈航航), Zijiang Yang(杨紫江), and Maodu Chen(陈茂笃). Chin. Phys. B, 2022, 31(9): 098204.
[3] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[4] New experimental measurement of natSe(n, γ) cross section between 1 eV to 1 keV at the CSNS Back-n facility
Xin-Rong Hu(胡新荣), Long-Xiang Liu(刘龙祥), Wei Jiang(蒋伟), Jie Ren(任杰), Gong-Tao Fan(范功涛), Hong-Wei Wang(王宏伟), Xi-Guang Cao(曹喜光), Long-Long Song(宋龙龙), Ying-Du Liu(刘应都), Yue Zhang(张岳), Xin-Xiang Li(李鑫祥), Zi-Rui Hao(郝子锐), Pan Kuang(匡攀), Xiao-He Wang(王小鹤), Ji-Feng Hu(胡继峰), Bing Jiang(姜炳), De-Xin Wang(王德鑫), Suyalatu Zhang(张苏雅拉吐), Zhen-Dong An(安振东), Yu-Ting Wang(王玉廷), Chun-Wang Ma(马春旺), Jian-Jun He(何建军), Jun Su(苏俊), Li-Yong Zhang(张立勇), Yu-Xuan Yang(杨宇萱), Sheng Jin(金晟), and Kai-Jie Chen(陈开杰). Chin. Phys. B, 2022, 31(8): 080101.
[5] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[6] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[7] Measurement of 232Th (n,γ) cross section at the CSNS Back-n facility in the unresolved resonance region from 4 keV to 100 keV
Bing Jiang(姜炳), Jianlong Han(韩建龙), Jie Ren(任杰), Wei Jiang(蒋伟), Xiaohe Wang(王小鹤), Zian Guo(郭子安), Jianglin Zhang(张江林), Jifeng Hu(胡继峰), Jingen Chen(陈金根), Xiangzhou Cai(蔡翔舟), Hongwei Wang(王宏伟), Longxiang Liu(刘龙祥), Xinxiang Li(李鑫祥), Xinrong Hu(胡新荣), and Yue Zhang(张岳). Chin. Phys. B, 2022, 31(6): 060101.
[8] Neutron activation cross section data library
Xiao-Long Huang(黄小龙), Zhi-Gang Ge(葛智刚), Yong-Li Jin(金永利), Hai-Cheng Wu(吴海成), Xi Tao(陶曦),Ji-Min Wang(王记民), Li-Le Liu(刘丽乐), Yue Zhang(张玥), and Xiao-Fei Wu(吴小飞). Chin. Phys. B, 2022, 31(6): 060102.
[9] Measurements of the 107Ag neutron capture cross sections with pulse height weighting technique at the CSNS Back-n facility
Xin-Xiang Li(李鑫祥), Long-Xiang Liu(刘龙祥), Wei Jiang(蒋伟), Jie Ren(任杰), Hong-Wei Wang(王宏伟), Gong-Tao Fan(范功涛), Jian-Jun He(何建军), Xi-Guang Cao(曹喜光), Long-Long Song(宋龙龙),Yue Zhang(张岳), Xin-Rong Hu(胡新荣), Zi-Rui Hao(郝子锐), Pan Kuang(匡攀), Bing Jiang(姜炳),Xiao-He Wang(王小鹤), Ji-Feng Hu(胡继峰), Jin-Cheng Wang(王金成), De-Xin Wang(王德鑫),Su-Yalatu Zhang(张苏雅拉吐), Ying-Du Liu(刘应都), Xu Ma(麻旭), Chun-Wang Ma(马春旺),Yu-Ting Wang(王玉廷), Zhen-Dong An(安振东), Jun Su(苏俊), Li-Yong Zhang(张立勇),Yu-Xuan Yang(杨宇萱), Wen-Bo Liu(刘文博), Wan-Qing Su(苏琬晴),Sheng Jin(金晟), and Kai-Jie Chen(陈开杰). Chin. Phys. B, 2022, 31(3): 038204.
[10] Electron excitation processes in low energy collisions of hydrogen-helium atoms
Kun Wang(王堃), Chuan Dong(董川), Yi-Zhi Qu(屈一至), Ling Liu(刘玲), Yong Wu(吴勇),Xu-Hai Hong(洪许海), and Robert J. Buenker. Chin. Phys. B, 2022, 31(12): 123401.
[11] A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[12] Electron-impact ionization cross section calculations for lithium-like ions
Guo-Jie Bian(卞国杰), Jyh-Ching Chang(张稚卿), Ke-Ning Huang(黄克宁), Chen-Sheng Wu(武晨晟), Yong-Jun Cheng(程勇军), Kai Wang(王凯), and Yong Wu(吴勇). Chin. Phys. B, 2022, 31(1): 013401.
[13] State-to-state dynamics of reactions H+DH'(v = 0,j = 0) → HH'(v',j')+D/HD(v',j')+H' with time-dependent quantum wave packet method
Juan Zhao(赵娟), Da-Guang Yue(岳大光), Lu-Lu Zhang(张路路), Shang Gao(高尚), Zhong-Bo Liu(刘中波), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2021, 30(7): 073102.
[14] Exact quantum dynamics study of the H(2S)+SiH+(X1Σ+) reaction on a new potential energy surface of SiH2+(X2A1)
Wen-Li Zhao(赵文丽), Rui-Shan Tan(谭瑞山), Xue-Cheng Cao(曹学成), Feng Gao(高峰), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2021, 30(12): 123403.
[15] Elastic electron scattering with formamide-(H2O)n complexes (n=1, 2): Influence of microsolvation on the π* and σ* resonances
Kedong Wang(王克栋), Yan Wang(王言), Jie Liu(刘洁), Yiwen Wang(王怡文), and Haoxing Zhang(张浩兴). Chin. Phys. B, 2021, 30(12): 123401.
No Suggested Reading articles found!