Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 034101    DOI: 10.1088/1674-1056/ad188e
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

On-chip ultrafast stackable dielectric laser positron accelerator

Bin Sun(孙斌)1,2,†, Yangfan He(何阳帆)2, Chenhao Pan(潘晨浩)3,4, Sijie Fan(樊思劼)5, Du Wang(王度)6, Shaoyi Wang(王少义)2, and Zongqing Zhao(赵宗清)2,‡
1 Department of Plasma Physics and Fusion Engineering, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China;
2 National Key Laboratory of Plasma Physics, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China;
3 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China;
4 State Key Laboratory of High Field Laser Physics and Chinese Academy of Sciences Center for Excellence in Ultra-Intense Laser Science, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
5 Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
6 The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
Abstract  We present a first on-chip positron accelerator based on dielectric laser acceleration. This innovative approach significantly reduces the physical dimensions of the positron acceleration apparatus, enhancing its feasibility for diverse applications. By utilizing a stacked acceleration structure and far-infrared laser technology, we are able to achieve a seven-stage acceleration structure that surpasses the distance and energy gain of using the previous dielectric laser acceleration methods. Additionally, we are able to compress the positron beam to an ultrafast sub-femtosecond scale during the acceleration process, compared with the traditional methods, the positron beam is compressed to a greater extent. We also demonstrate the robustness of the stacked acceleration structure through the successful acceleration of the positron beam.
Keywords:  dielectric laser accelerator      positron accelerator      high gradient accelerator      inverse Cherenkov effect  
Received:  25 September 2023      Revised:  12 December 2023      Accepted manuscript online:  25 December 2023
PACS:  41.75.Jv (Laser-driven acceleration?)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.-p (Wave optics)  
  41.20.-q (Applied classical electromagnetism)  
Fund: The authors thank Dr. Wei Li at the University of Science and Technology of China, Dr. Qiangyou He at the Peking University, and Dr. Lai Wei at Laser Fusion Research Center, CAEP, for the insightful discussion. This project was supported by the National Natural Science Foundation of China (Grant No. 11975214).
Corresponding Authors:  Bin Sun, Zongqing Zhao     E-mail:  binsun97@mail.ustc.edu.cn;zhaozongqing99@caep.cn

Cite this article: 

Bin Sun(孙斌), Yangfan He(何阳帆), Chenhao Pan(潘晨浩), Sijie Fan(樊思劼), Du Wang(王度), Shaoyi Wang(王少义), and Zongqing Zhao(赵宗清) On-chip ultrafast stackable dielectric laser positron accelerator 2024 Chin. Phys. B 33 034101

[1] Tang J 2022 Front. Phys. 10 828878
[2] Canepa A and D'Onofrio M 2023 Front. Phys. 10 916078
[3] Blodgett T M, Meltzer C C and Townsend D W 2007 Radiology 242 325
[4] Fan X, Wang H, Yun M, Sun X L, Cao X X, Liu S Q, Chai P, Li D Wu, Liu B D, Wang L and Wei L 2015 Chin. Phys. B 24 018702
[5] Dang Y L, Liu F L, Fu G Y, Wu D and Wang N Y 2019 Chin. Phys. B 28 100701
[6] Jiang M, Su D D, Lin N S and Li Y J 2021 Chin. Phys. B 30 070306
[7] Chen S, Song L, Zhang P, Cao X, Yu R, Wang B, Wei L and Zhang R 2019 Chin. Phys. B 28 024214
[8] Ali S I, Das A, Agrawal A, Mukherjee S, Ahmed M, Nambissan P M G, Mandal S and Characterization A C M 2021 Chin. Phys. B 30 026103
[9] Zhao J, Hu Y T, Lu Y, Zhang H, Hu L X, Zhu X L, Sheng Z M, Turcu I C E, Pukhov A, Pukhov A, Shao F Q and Yu T P 2022 Commun. Phys. 5 15
[10] Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R, Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B, Norreys P A, Tsung F S, Viskup R, Walton B R and Krushelnick K 2004 Nature 431 535
[11] Geddes C G R, Toth Cs, Tilborg J, Esarey E, Schroeder C B, Bruhwiler D, Nieter C, Cary J and Leemans W P 2004 Nature 431 538
[12] Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J P, Burgy F and Malka V 2004 Nature 431 541
[13] Leemans W P, Nagler B, Gonsalves A J, Tóth Cs, Nakamura K, Geddes C G R, Esarey E, Schroeder C B and Hooker S M 2006 Nat. Phys. 2 696
[14] Sarri G, Schumaker W, Piazza D A, Vargas M, Dromey, B, Dieckmann M E, Chvykov V, Maksimchuk A, Yanovsky V, He Z H, Hou B X, Nees J A, Thomas A G R, Keitel C H, Zepf M and Krushelnick K 2013 Phys. Rev. Lett. 110 255002
[15] Ipp A, Evers J, Keitel C H and Hatsagortsyan K Z 2011 Phys. Lett. B 702 383
[16] Li H Z, Yu T P, Hu L X, Yin Y, Zou D B, Liu J X, Wang W Q, Hu S and Shao F Q 2017 Opt. Express 25 21583
[17] Zhu X L, Chen M, Yu T P, Weng S M, He F and Sheng Z M 2019 Matter Radiat. Extremes 4 014401
[18] Clayton C E, Ralph J E, Albert F, Fonseca R A, Glenzer S H, Joshi C, Lu W, Marsh K A, Martins S F, Mori W B, Pak A, Tsung F S, Pollock B B, Ross J S, Silva L O and Froula D H 2010 Phys. Rev. Lett. 105 105003
[19] Albert F and Thomas A G R 2016 Plasma Phys. Control. Fusion 58 103001
[20] England R J, Noble R J, Bane K, Dowell D H, Ng C K, Spencer J E, Tantawi S, Wu Z, Byer R L, Peralta E, Soong K, Chang C M, Montazeri B, Wolf S J, Cowan B, Dawson J, Gai W, Hommelhoff P, Huang Y C, Jing C, McGuinness C, Palmer R B, Naranjo B, Rosenzweig J, Travish G, Mizrahi A, Schachter L, Sears C, Werner G R and Yoder R B 2014 Rev. Mod. Phys. 86 1337
[21] Sapra Neil V, Yang Ki Y, Vercruysse D, Leedle Kenneth J, Black Dylan S, England R J, Su L, Trivedi R, Miao Y, Solgaard O, Byer R L and Vučković J 2020 Science 367 79
[22] Plettner T, Lu P P and Byer R L 2006 Phys. Rev. ST Accel. Beams 9 111301
[23] Naranjo B, Valloni A, Putterman S and Rosenzweig J B 2012 Phys. Rev. Lett. 109 164803
[24] Peralta E A, Soong K, England R J, Colby E R, Wu Z, Montazeri B, McGuinness C, McNeur J, Leedle K J, Walz D, Sozer E B, Cowan B, Schwartz B, Travish G and Byer R L 2013 Nature 503 91
[25] Leedle K J, Pease Fabian R, Byer R L and Harris J S 2015 Optica 2 158
[26] Shiloh R, Illmer J, Chlouba T, Yousefi P, Schönenberger N, Niedermayer U, Mittelbach A and Hommelhoff P 2021 Nature 597 498
[27] Meng Y, Chen Y, Lu L, Ding Y, Cusano A, Fan J A, Hu Q, Wang K, Xie Z, Liu Z, Yang Y, Liu Q, Gong M, Xiao Q, Sun S, Zhang M, Yuan X and Ni X 2021 Light Sci. Appl. 10 235
[28] Kozák M, Beck P, Deng H, McNeur J, Schönenberger N, Gaida C, Stutzki F, Gebhardt M, Limpert J, Ruehl A, Hartl I, Solgaard O, Harris J S, Byer R L and Hommelhoff P 2017 Opt. Express 25 19195
[29] Liu W, Yu Z, Sun L, Liu Y, Jia Q, Xu H and Sun B 2020 Phys. Rev. Appl 14 014018
[30] Sun L, Liu W, Zhou J, Zhu Y, Yu Z, Liu Y, Jia Q, Sun B and Xu H 2021 New J. Phys. 23 063031
[31] Liu W, Sun L, Yu Z, Liu Y, Jia Q, Sun B and Xu H 2021 Opt. Lett. 46 4398
[32] Sun B, He Y F, Luo R Y, Zhang T Y, Zhou Q, Wang S Y, Zheng J and Zhao Z Q 2023 Nucl. Sci. Tech. 34 23
[33] Qin H, Chung M and Davidson R C 2009 Phys. Rev. Lett. 103 224802
[34] Sun B, He Y F, Luo R Y, Zhang T Y, Zhou Q, Wang S Y, Wang D and Zhao Z Q 2023 Chin. Phys. B 32 094101
[35] Chlouba T, Shiloh R, Kraus S, Brückner L, Litzel J and Hommelhoff P 2023 Nature 622 476
[1] Structure and material study of dielectric laser accelerators based on the inverse Cherenkov effect
Bin Sun(孙斌), Yang-Fan He(何阳帆), Ruo-Yun Luo(罗若云), Tai-Yang Zhang(章太阳), Qiang Zhou(周强), Shao-Yi Wang(王少义), Du Wang(王度), and Zong-Qing Zhao(赵宗清). Chin. Phys. B, 2023, 32(9): 094101.
[2] Structure study of a dielectric laser accelerator with discrete translational symmetry
Yangfan He(何阳帆), Bin Sun(孙斌), Mingjiang Ma(马铭江), Wei Li(李伟), Zhihao Cui(崔志浩), and Zongqing Zhao(赵宗清). Chin. Phys. B, 2023, 32(11): 114101.
No Suggested Reading articles found!