Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 024102    DOI: 10.1088/1674-1056/ad0119
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Wideband low-scattering metasurface with an in-band reconfigurable transparent window

Ying Zhu(朱瑛), Weixu Yang(杨维旭), Kun Duan(段坤), Tian Jiang(姜田), Junming Zhao(赵俊明), Ke Chen(陈克), and Yijun Feng(冯一军)
School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
Abstract  Active metasurfaces with dynamically reconfigurable functionalities are highly demanded in various practical applications. Here, we propose a wideband low-scattering metasurface that can realize an in-band reconfigurable transparent window by altering the operation states of the PIN diodes loaded on the structures. The metasurface is composed of a band-pass frequency selective surface (FSS) sandwiched between two polarization conversion metasurfaces (PCMs). PIN diodes are integrated into the FSS to switch the transparent window, while a checkerboard configuration is applied in PCMs for the diffusive-reflective function. A sample with 20×20 elements is designed, fabricated, and experimentally verified. Both simulated and measured results show that the in-band functions can be dynamically switched between beam-splitting scattering and high transmission by controlling the biasing states of the diodes, while low backscattering can be attained outside the passband. Furthermore, the resonant structures of FSS also play the role of feeding lines, thus significantly eliminating extra interference compared with conventional feeding networks. We envision that the proposed metasurface may provide new possibilities for the development of an intelligent stealth platform and its antenna applications.
Keywords:  metasurface      reconfigurable transparent window      radar cross section (RCS) reduction  
Received:  08 August 2023      Revised:  24 September 2023      Accepted manuscript online:  07 October 2023
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
Fund: Project supported by the Joint Fund of Ministry of Education for Equipment Pre-research (Grant No. 8091B032112), the National Natural Science Foundation of China (Grant Nos. 62271243 and 62071215), the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Fundamental Research Funds for the Central Universities, and Jiangsu Provincial Key Laboratory of Advanced Manipulating Technique of Electromagnetic Wave.
Corresponding Authors:  Junming Zhao, Ke Chen     E-mail:  jmzhao@nju.edu.cn;ke.chen@nju.edu.cn

Cite this article: 

Ying Zhu(朱瑛), Weixu Yang(杨维旭), Kun Duan(段坤), Tian Jiang(姜田), Junming Zhao(赵俊明), Ke Chen(陈克), and Yijun Feng(冯一军) Wideband low-scattering metasurface with an in-band reconfigurable transparent window 2024 Chin. Phys. B 33 024102

[1] Jiang W, Liu Y, Gong S and Hong T 2009 IEEE Antennas Wirel. Propag. Lett. 8 1275
[2] Dikmen C M, Çimen S and Çakır G 2014 IEEE Trans. Antennas Propag. 62 2946
[3] Jiang W, Gong S, Liu Y, Li Y and Hong T 2010 Asia-Pacific Microwave Conference, December 7-10, 2010 Yokohama, Japan, p. 2135
[4] Micheli D, Vricella A, Pastore R and Marchetti M 2014 Carbon 77 756
[5] Rashid L and Brown A 2010 Proceedings of the Fourth European Conference on Antennas and Propagation April 12-16, 2010 Barcelona, Spain, p. 1
[6] Li Y Q, Zhang H, Fu Y Q and Yuan N C 2008 IEEE Antennas Wirel. Propag. Lett. 7 473
[7] Zahra S, Ma L, Wang W, Li J, Chen D, Liu Y, Zhou Y, Li N, Huang Y and Wen G 2021 Front. Phys. 8 593411
[8] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333
[9] Zhang N, Chen K, Zhao J, Hu Q, Tang K, Zhao J, Jiang T and Feng Y 2022 IEEE Trans. Antennas Propag. 70 7403
[10] Hu Q, Zhao J, Chen K, Qu K, Yang W, Zhao J, Jiang T and Feng Y 2022 Laser Photonics Rev. 16 2100718
[11] Zhou Z, Chen K, Zhu B, Zhao J, Feng Y and Li Y 2018 IEEE Access 6 26843
[12] Dai J Y, Tang W, Wang M, Chen M Z, Cheng Q, Jin S, Cui T J and Chan C H 2022 IEEE Trans. Antennas Propag. 70 4774
[13] Chen K, Feng Y, Monticone F, Zhao J, Zhu B, Jiang T, Zhang L, Kim Y, Ding X, Zhang S, Alú A and Qiu C W 2017 Adv. Mater. 29 1606422
[14] Azad A K, Efimov A V, Ghosh S, Singleton J, Taylor A J and Chen H T 2017 Appl. Phys. Lett. 110 224101
[15] Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Wang J H, Lin R M, Kuan C H, Li T, Wang Z, Zhu S and Tsai D P 2018 Nat. Nanotechnol. 13 227
[16] Xu H X, Hu G, Wang Y, Wang C, Wang M, Wang S, Huang Y, Genevet P, Huang W and Qiu C W 2021 Light Sci. Appl. 10 75
[17] Tao H, Zhao M, Xu Y, Wang S and Yang Z 2018 IEEE Photonics Technol. Lett. 30 1281
[18] Zhen Z, Qian C, Jia Y, Fan Z, Hao R, Cai T, Zheng B, Chen H and Li E 2021 Photonics Res. 9 B229
[19] Zhang X G, Sun Y L, Yu Q, Cheng Q, Jiang W X, Qiu C W and Cui T J 2021 Adv. Mater. 33 2007966
[20] Huang L, Chen X, Mühlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah K W, Qiu C W, Li J, Zentgraf T and Zhang S 2013 Nat. Commun. 4 2808
[21] Ren H, Briere G, Fang X, Ni P, Sawant R, Héron S, Chenot S, Vézian S, Damilano B, Brändli V, Maier S A and Genevet P 2019 Nat. Commun. 10 2986
[22] Yang W, Chen K, Dong S, Wang S, Qu K, Jiang T, Zhao J and Feng Y 2023 ACS Appl. Mater. Interfaces 15 27380
[23] Li Y, Li H, Wang Y, Wang Y and Cao Q 2020 IEEE Trans. Antennas Propag. 68 7688
[24] Wang C Y, Liang J G, Cai T, Li H P, Ji W Y, Zhang Q and Zhang C W 2019 IEEE Access 7 57259
[25] Lim D and Lim S 2019 IEEE Antennas Wirel. Propag. Lett. 18 1887
[26] Sun J, Chen K, Ding G, Guo W, Zhao J, Feng Y and Jiang T 2019 IEEE Access 7 93919
[27] Huang C, Pan W, Ma X and Luo X 2015 IEEE Antennas Wirel. Propag. Lett. 14 1369
[28] Zhang B, Jin C, Yin L, Lv Q, Zhang P and Tian B 2022 IEEE Antennas Wirel. Propag. Lett. 21 635
[29] Chen J, Wei Y, Zhao Y, Lin L, Li L and Su T 2022 IEEE Trans. Antennas Propag. 70 5574
[30] Liu Y, Liu Z, Wang Q and Jia Y 2021 IEEE Trans. Antennas Propag. 69 8955
[31] Liu J, Li J Y and Chen Z N 2022 IEEE Trans. Antennas Propag. 70 3834
[32] Guo W L, Wang G M, Chen K, Li H P, Zhuang Y Q, Xu H X and Feng Y 2019 Phys. Rev. Appl. 12 014009
[33] Liu Y, Jia Y, Zhang W and Li F 2020 IEEE Trans. Antennas Propag. 68 3644
[34] Zhu Z, Li Y, Jing Y, Wang J, Zhang J and Qu S 2022 Opt. Express 30 3820
[35] Guo Q, Su J, Li Z, Song J, and Guan Y 2020 IEEE Trans. Antennas Propag. 68 6683
[36] Fan Y, Li D, Ma H, Xing J, Gu Y, Ang L K and Li E P 2023 IEEE Trans. Antennas Propag. 71 2855
[37] Li M, Zhou L and Shen Z 2022 IEEE Antennas Wirel. Propag. Lett. 21 327
[38] Pang Y, Li Y, Qu B, Yan M, Wang J, Qu S and Xu Z 2020 IEEE Trans. Antennas Propag. 68 7079
[39] Li Q, Pang Y, Li Y, Yan M, Wang J, Xu Z and Qu S 2018 J. Appl. Phys. 124 065107
[40] Li F, Fang W, Chen P, Poo Y and Wu R X 2018 Opt. Express 26 33878
[41] Guo W L, Chen K, Wang G M, Luo X Y, Cai T, Zhang C B and Feng Y 2020 Adv. Opt. Mater. 8 2000860
[42] Bakshi S C, Mitra D and Ghosh S 2019 IEEE Antennas Wirel. Propag. Lett. 18 29
[43] Li R, Tian J, Jiang B, Lin Z, Chen B and Hu H 2021 IEEE Antennas Wirel. Propag. Lett. 20 1567
[1] Giant and controllable Goos—Hänchen shift of a reflective beam off a hyperbolic metasurface of polar crystals
Tian Xue(薛天), Yu-Bo Li(李宇博), Hao-Yuan Song(宋浩元), Xiang-Guang Wang(王相光), Qiang Zhang(张强), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), and Xuan-Zhang Wang(王选章). Chin. Phys. B, 2024, 33(1): 014207.
[2] A 1-bit electronically reconfigurable beam steerable metasurface reflectarray with multiple polarization manipulations
Yan Shi(史琰), Xi-Ya Xu(徐茜雅), Shao-Ze Wang(王少泽), Wen-Yue Wei(魏文岳), and Quan-Wei Wu(武全伟). Chin. Phys. B, 2024, 33(1): 014201.
[3] Real-time and high-transmission middle-infrared optical imaging system based on a pixel-wise metasurface micro-polarization array
Lifeng Ma(马丽凤), Shan Du(杜杉), Jun Chang(常军), Weilin Chen(陈蔚霖), Chuhan Wu(武楚晗), Xinxin Shi(石鑫鑫), Yi Huang(黄翼), Yue Zhong(钟乐), and Quanquan Mu(穆全全). Chin. Phys. B, 2023, 32(8): 084201.
[4] High efficiency and high transmission asymmetric polarization converter with chiral metasurface in visible and near-infrared region
Yuhang Gao(高雨航), Yu Tian(田宇), Qingguo Du(杜庆国), Yuanli Wang(王原丽), Qin Fu(付琴), Qiang Bian(卞强), Zhengying Li(李政颖), Shuai Feng(冯帅), and Fangfang Ren(任芳芳). Chin. Phys. B, 2023, 32(7): 074201.
[5] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[6] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[7] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[8] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[9] Multifunctional light-field modulation based on hybrid nonlinear metasurfaces
Shuhang Qian(钱树航), Kai Wang(王凯), Jiaxing Yang(杨加兴), Chao Guan(关超), Hua Long(龙华), and Peixiang Lu(陆培祥). Chin. Phys. B, 2023, 32(10): 107803.
[10] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[11] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[12] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[13] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[14] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[15] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
No Suggested Reading articles found!