ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Wideband low-scattering metasurface with an in-band reconfigurable transparent window |
Ying Zhu(朱瑛), Weixu Yang(杨维旭), Kun Duan(段坤), Tian Jiang(姜田), Junming Zhao(赵俊明)†, Ke Chen(陈克)‡, and Yijun Feng(冯一军) |
School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China |
|
|
Abstract Active metasurfaces with dynamically reconfigurable functionalities are highly demanded in various practical applications. Here, we propose a wideband low-scattering metasurface that can realize an in-band reconfigurable transparent window by altering the operation states of the PIN diodes loaded on the structures. The metasurface is composed of a band-pass frequency selective surface (FSS) sandwiched between two polarization conversion metasurfaces (PCMs). PIN diodes are integrated into the FSS to switch the transparent window, while a checkerboard configuration is applied in PCMs for the diffusive-reflective function. A sample with 20×20 elements is designed, fabricated, and experimentally verified. Both simulated and measured results show that the in-band functions can be dynamically switched between beam-splitting scattering and high transmission by controlling the biasing states of the diodes, while low backscattering can be attained outside the passband. Furthermore, the resonant structures of FSS also play the role of feeding lines, thus significantly eliminating extra interference compared with conventional feeding networks. We envision that the proposed metasurface may provide new possibilities for the development of an intelligent stealth platform and its antenna applications.
|
Received: 08 August 2023
Revised: 24 September 2023
Accepted manuscript online: 07 October 2023
|
PACS:
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
81.05.Xj
|
(Metamaterials for chiral, bianisotropic and other complex media)
|
|
Fund: Project supported by the Joint Fund of Ministry of Education for Equipment Pre-research (Grant No. 8091B032112), the National Natural Science Foundation of China (Grant Nos. 62271243 and 62071215), the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Fundamental Research Funds for the Central Universities, and Jiangsu Provincial Key Laboratory of Advanced Manipulating Technique of Electromagnetic Wave. |
Corresponding Authors:
Junming Zhao, Ke Chen
E-mail: jmzhao@nju.edu.cn;ke.chen@nju.edu.cn
|
Cite this article:
Ying Zhu(朱瑛), Weixu Yang(杨维旭), Kun Duan(段坤), Tian Jiang(姜田), Junming Zhao(赵俊明), Ke Chen(陈克), and Yijun Feng(冯一军) Wideband low-scattering metasurface with an in-band reconfigurable transparent window 2024 Chin. Phys. B 33 024102
|
[1] Jiang W, Liu Y, Gong S and Hong T 2009 IEEE Antennas Wirel. Propag. Lett. 8 1275 [2] Dikmen C M, Çimen S and Çakır G 2014 IEEE Trans. Antennas Propag. 62 2946 [3] Jiang W, Gong S, Liu Y, Li Y and Hong T 2010 Asia-Pacific Microwave Conference, December 7-10, 2010 Yokohama, Japan, p. 2135 [4] Micheli D, Vricella A, Pastore R and Marchetti M 2014 Carbon 77 756 [5] Rashid L and Brown A 2010 Proceedings of the Fourth European Conference on Antennas and Propagation April 12-16, 2010 Barcelona, Spain, p. 1 [6] Li Y Q, Zhang H, Fu Y Q and Yuan N C 2008 IEEE Antennas Wirel. Propag. Lett. 7 473 [7] Zahra S, Ma L, Wang W, Li J, Chen D, Liu Y, Zhou Y, Li N, Huang Y and Wen G 2021 Front. Phys. 8 593411 [8] Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F and Gaburro Z 2011 Science 334 333 [9] Zhang N, Chen K, Zhao J, Hu Q, Tang K, Zhao J, Jiang T and Feng Y 2022 IEEE Trans. Antennas Propag. 70 7403 [10] Hu Q, Zhao J, Chen K, Qu K, Yang W, Zhao J, Jiang T and Feng Y 2022 Laser Photonics Rev. 16 2100718 [11] Zhou Z, Chen K, Zhu B, Zhao J, Feng Y and Li Y 2018 IEEE Access 6 26843 [12] Dai J Y, Tang W, Wang M, Chen M Z, Cheng Q, Jin S, Cui T J and Chan C H 2022 IEEE Trans. Antennas Propag. 70 4774 [13] Chen K, Feng Y, Monticone F, Zhao J, Zhu B, Jiang T, Zhang L, Kim Y, Ding X, Zhang S, Alú A and Qiu C W 2017 Adv. Mater. 29 1606422 [14] Azad A K, Efimov A V, Ghosh S, Singleton J, Taylor A J and Chen H T 2017 Appl. Phys. Lett. 110 224101 [15] Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Wang J H, Lin R M, Kuan C H, Li T, Wang Z, Zhu S and Tsai D P 2018 Nat. Nanotechnol. 13 227 [16] Xu H X, Hu G, Wang Y, Wang C, Wang M, Wang S, Huang Y, Genevet P, Huang W and Qiu C W 2021 Light Sci. Appl. 10 75 [17] Tao H, Zhao M, Xu Y, Wang S and Yang Z 2018 IEEE Photonics Technol. Lett. 30 1281 [18] Zhen Z, Qian C, Jia Y, Fan Z, Hao R, Cai T, Zheng B, Chen H and Li E 2021 Photonics Res. 9 B229 [19] Zhang X G, Sun Y L, Yu Q, Cheng Q, Jiang W X, Qiu C W and Cui T J 2021 Adv. Mater. 33 2007966 [20] Huang L, Chen X, Mühlenbernd H, Zhang H, Chen S, Bai B, Tan Q, Jin G, Cheah K W, Qiu C W, Li J, Zentgraf T and Zhang S 2013 Nat. Commun. 4 2808 [21] Ren H, Briere G, Fang X, Ni P, Sawant R, Héron S, Chenot S, Vézian S, Damilano B, Brändli V, Maier S A and Genevet P 2019 Nat. Commun. 10 2986 [22] Yang W, Chen K, Dong S, Wang S, Qu K, Jiang T, Zhao J and Feng Y 2023 ACS Appl. Mater. Interfaces 15 27380 [23] Li Y, Li H, Wang Y, Wang Y and Cao Q 2020 IEEE Trans. Antennas Propag. 68 7688 [24] Wang C Y, Liang J G, Cai T, Li H P, Ji W Y, Zhang Q and Zhang C W 2019 IEEE Access 7 57259 [25] Lim D and Lim S 2019 IEEE Antennas Wirel. Propag. Lett. 18 1887 [26] Sun J, Chen K, Ding G, Guo W, Zhao J, Feng Y and Jiang T 2019 IEEE Access 7 93919 [27] Huang C, Pan W, Ma X and Luo X 2015 IEEE Antennas Wirel. Propag. Lett. 14 1369 [28] Zhang B, Jin C, Yin L, Lv Q, Zhang P and Tian B 2022 IEEE Antennas Wirel. Propag. Lett. 21 635 [29] Chen J, Wei Y, Zhao Y, Lin L, Li L and Su T 2022 IEEE Trans. Antennas Propag. 70 5574 [30] Liu Y, Liu Z, Wang Q and Jia Y 2021 IEEE Trans. Antennas Propag. 69 8955 [31] Liu J, Li J Y and Chen Z N 2022 IEEE Trans. Antennas Propag. 70 3834 [32] Guo W L, Wang G M, Chen K, Li H P, Zhuang Y Q, Xu H X and Feng Y 2019 Phys. Rev. Appl. 12 014009 [33] Liu Y, Jia Y, Zhang W and Li F 2020 IEEE Trans. Antennas Propag. 68 3644 [34] Zhu Z, Li Y, Jing Y, Wang J, Zhang J and Qu S 2022 Opt. Express 30 3820 [35] Guo Q, Su J, Li Z, Song J, and Guan Y 2020 IEEE Trans. Antennas Propag. 68 6683 [36] Fan Y, Li D, Ma H, Xing J, Gu Y, Ang L K and Li E P 2023 IEEE Trans. Antennas Propag. 71 2855 [37] Li M, Zhou L and Shen Z 2022 IEEE Antennas Wirel. Propag. Lett. 21 327 [38] Pang Y, Li Y, Qu B, Yan M, Wang J, Qu S and Xu Z 2020 IEEE Trans. Antennas Propag. 68 7079 [39] Li Q, Pang Y, Li Y, Yan M, Wang J, Xu Z and Qu S 2018 J. Appl. Phys. 124 065107 [40] Li F, Fang W, Chen P, Poo Y and Wu R X 2018 Opt. Express 26 33878 [41] Guo W L, Chen K, Wang G M, Luo X Y, Cai T, Zhang C B and Feng Y 2020 Adv. Opt. Mater. 8 2000860 [42] Bakshi S C, Mitra D and Ghosh S 2019 IEEE Antennas Wirel. Propag. Lett. 18 29 [43] Li R, Tian J, Jiang B, Lin Z, Chen B and Hu H 2021 IEEE Antennas Wirel. Propag. Lett. 20 1567 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|