Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 016802    DOI: 10.1088/1674-1056/abb223
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effects of WC-Co reinforced Ni-based alloy by laser melting deposition: Wear resistance and corrosion resistance

Zhao-Zhen Huang(黄昭祯)1, Zhi-Chen Zhang(张志臣)1,†, Fan-Liang Tantai(澹台凡亮)2, Hong-Fang Tian(田洪芳)2, Zhen-Jie Gu(顾振杰)3, Tao Xi(郗涛)1, Zhu Qian(钱铸)4, and Yan Fang(方艳)1,
1 School of Mechanical Engineering, Tiangong University, Tianjin 300387, China; 2 Shandong Energy Heavy Equipment Group Dazu Remanufacturing Co., Ltd, Xintai 271219, China; 3 Laser Technology Institute, Tiangong University, Tianjin 300387, China; 4 Tianjin Zhujin Technology Development Co., Ltd, Tianjin 300230, China
Abstract  WC-Co reinforced C276 alloy composite coatings are fabricated on Q235 steel by laser melting deposition. The microstructure, hardness, wear performance, and electrochemical corrosion behavior of composite coating are studied. The results show that WC-Co particles are mostly uniformly distributed in the coating and provide favorable conditions for heterogeneous nucleation. The microstructure of C276/WC-Co composite coatings is composed of γ-Ni solid solution dendrites and MoNi solid solution eutectics. The WC-Co particles can effectively improve the hardness and wear resistance of C276 alloy. The average hardness of the composite coating containing 10-wt% WC-Co (447 HV0.2) are 1.26 times higher than that of the C276 alloy (356 HV0.2). The wear rate of composite coating containing 10-wt% WC-Co (6.95 × 10 -3 mg/m) is just 3.5% of that of C276 coating (196.23× 10 -3 mg/m). However, comparing with Hastelloy C276,the corrosion resistance of C276/WC-Co composite coating decreases.
Keywords:  WC-Co      wear resistance      corrosion resistance      laser melting deposition  
Received:  11 June 2020      Revised:  02 August 2020      Accepted manuscript online:  25 August 2020
PACS:  68.35.bd (Metals and alloys)  
  81.05.Je (Ceramics and refractories (including borides, carbides, hydrides, nitrides, oxides, and silicides))  
  81.40.Pq (Friction, lubrication, and wear)  
  82.45.Bb (Corrosion and passivation)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB1103604), the Industrial Transformation and Upgrading Funds of the Ministry of Industry and Information Technology, China (Grant No. RZJC-XM19-004), the Tianjin Municipal Special Program of Talents Development for Excellent Youth Scholars, China (Grant No. TJTZJH-QNBJRC-2-15), the National Natural Science Foundation of China (Grant No. 61475117), and the Scientific Research Program of Tianjin Municipal Education Commission, China (Grant No. 2018KJ206).
Corresponding Authors:  Corresponding author. E-mail: Zhangzhichen66@sina.com Corresponding author. E-mail: yanfang1108@163.com   

Cite this article: 

Zhao-Zhen Huang(黄昭祯), Zhi-Chen Zhang(张志臣), Fan-Liang Tantai(澹台凡亮), Hong-Fang Tian(田洪芳), Zhen-Jie Gu(顾振杰), Tao Xi(郗涛), Zhu Qian(钱铸), and Yan Fang(方艳) Effects of WC-Co reinforced Ni-based alloy by laser melting deposition: Wear resistance and corrosion resistance 2021 Chin. Phys. B 30 016802

1 Kesavan J, Senthilkumar V and Dinesh S 2020 Mater. Today Proc. 27 2441
2 Kong Y, Wang L and Yin Z 2018 Mater. Res. Express 6 2
3 Subramanian R, Natarajan B, Kaliyaperumal B and Chinnasamy R 2019 Mater. Res. Express 6 6
4 Zhang C, Zhang L W, Shen W F, Xu Q H and Cui Y 2017 J. Alloys Compd. 728 1269
5 Hashim M, Sarath Raghavendra Babu K E, Duraiselvam M and Natu H 2013 Mater. Des. 46 546
6 Yilbas B S and Ali H 2016 Opt. Lasers Eng. 78 140
7 Mulligan C P, Wei R H, Yang G, Zheng P Y, Deng R P and Gall D 2015 Surf. Coatings Technol. 270 299
8 Mishra T K, Kumar A and Sinha S K 2020 Mater. Today Proc. 26 2
9 Zhang Z H, Wang X, Zhang Q Q, Liang Y H, Ren L Q and Li X J 2019 Opt. Laser Technol. 119 105622
10 Lakshmikanthan A, Bontha S, Krishna M, Koppad P G and Ramprabhu T 2019 J. Alloys Compd. 786 570
11 Nie H B and Zhang T Q 2019 Tungsten 1 198
12 Wang H B, Hou C, Liu X, Liu X M and Song X Y 2018 Int. J. Refract. Metals Hard Mater. 71 122
13 Li F K, Yan Y Q, Li S Q, Wei D B, Wang S Y, Ding F, Duan B Z, Wang Z Z and Zhang P Z 2019 Surf. Coat. Technol. 374 1100
14 Krishna U G, Ranganatha P, Rajesh G L, Auradi V, Kumar S M and Vasudeva B 2019 Mater. Today Proc. 16 343
15 Hao E K, Zhao X Q, An Y L, Deng W, Ren Y, Zhou H D and Chen J M 2019 Int. J. Refract. Met. Hard Mater. 84 104978
16 Gu D D and Shen Y F 2006 Mater. Lett. 60 3664
17 Guo H J, Li B, Lu C, Zhou Q and Jia J H 2019 J. Alloys Compd. 789 966
18 Liu D, Zhang S Q, Li A and Wang H M 2009 J. Alloys Compd. 485 156
19 Yuan K B, Guo W G, Li P H, Wang J J, Su Y, Lin X and Li Y P 2018 Mater. Sci. Eng. A 721 215
20 Gu D D, Meiners W, Wissenbach K and Poprawe R 2012 Int. Mater. Rev. 57 133
21 Song H Y, Lei J B, Xie J C, Wu S K, Wang L T and Shou W 2019 J. Alloys Compd. 805 551
22 Nerz J E, Kushner B A and Rotolico A J 1992 J. Therm. Spray Technol. 1 147
23 Zhang L, Chen X M, Liu W, Jiang Z P, Zhao P and Liu D Y 2019 Laser & Optoelectron. Prog. 56 111401 (in Chinese)
24 Xia M J, Gu D D, Ma C L, Zhang H M, Dai D H, Chen H Y, Li C P, Zhou Z J, Chen G F and Kelbassa I 2019 J. Alloys Compd. 777 693
25 Erfanmanesh M, Shojarazavi R, Abdollahpour H, Mohammadiansemnani H, Barekat M and Hashemi S H 2019 Int. J. Refract. Met. Hard Mater. 81 137
26 Lu S P and Kwon O 2002 Surf. Coatings Technol. 153 40
27 Ahmad M, Akhter J I, Iqbal M, Akhtar M J, Ahmed E, Shaikh M A and Saeed K 2005 J. Nucl. Mater. 336 120
28 Jia Q B and Gu D D 2014 J. Alloys Compd. 585 713
29 Xu Y, Zhang T, Li L A, Li H D, Lu X Y and Jin Z S Chin. J. Mater. Res. 23 264
30 Ahmad M, Akhter J I, Akhtar M, Iqbal M, Ahmed E and Choudhry M A 2005 J. Alloys Compd. 390 88
31 Lu J Z, Cao J D, Lu H F, Zhang L Y and Luo K Y 2019 Surf. Coatings Technol. 369 228
32 Pereira J C, Zambrano J, Licausi M, Tobar M J and Amigo V 2015 Wear 330 280
33 Weng Z K, Wang A H, Wu X H, Wang Y Y and Yang Z X 2016 Surf. Coatings Technol. 304 283
34 Dai N W, Zhang L C, Zhang J X, Zhang X, Ni Q Z, Chen Y, Wu M L and Yang C 2016 Corros. Sci. 111 703
[1] Grain boundary restructuring and La/Ce/Y application in Nd-Fe-B magnets
Mi Yan(严密), Jiaying Jin(金佳莹), Tianyu Ma(马天宇). Chin. Phys. B, 2019, 28(7): 077507.
[2] Influences of substrate temperature on microstructure and corrosion behavior of APS Ni50Ti25Al25 inter-metallic coating
Sh Khandanjou, M Ghoranneviss, Sh Saviz, M Reza Afshar. Chin. Phys. B, 2018, 27(2): 028104.
[3] Improvement in coercivity,thermal stability,and corrosion resistance of sintered Nd-Fe-B magnets with Dy80Ga20 intergranular addition
Beibei Zhou(周贝贝), Xiangbin Li(李向斌), Xuejing Cao(曹学静), Gaolin Yan(严高林), Aru Yan(闫阿儒). Chin. Phys. B, 2016, 25(11): 117504.
[4] Surface morphology and electrochemical characterization of electrodeposited Ni–Mo nanocomposites as cathodes for hydrogen evolution
Elhachmi Guettaf Temam, Hachemi Ben Temam, Said Benramache. Chin. Phys. B, 2015, 24(10): 108202.
[5] Preparation of biomedical Ag incorporated hydroxyapatite/titania coatings on Ti6Al4V alloy by plasma electrolytic oxidation
Zhou Lan (周澜), Lü Guo-Hua (吕国华), Mao Fei-Fei (毛菲菲), Yang Si-Ze (杨思泽). Chin. Phys. B, 2014, 23(3): 035205.
[6] Microstructure and properties of Nb/Ta multilayer films irradiated by high current pulse electron beam
Ma Xin-Xin (马欣新), Guo Guang-Wei (郭光伟), Tang Guang-Ze (唐光泽), Sun Ming-Ren (孙明仁), Wang Li-Qin (王黎钦). Chin. Phys. B, 2013, 22(5): 056202.
[7] Properties of TiN coating on 45# steel for inner surface modification by grid-enhanced plasma source ion implantation method
Zhang Gu-Ling (张谷令), Wang Jiu-Li (王久丽), Liu Yuan-Fu (刘元富), Liu Chi-Zi (刘赤子), Yang Si-Ze (杨思泽). Chin. Phys. B, 2004, 13(8): 1309-1314.
[8] Phase transition and pitting corrosion behaviour for Mo-implanted aluminium
Zhang Tong-He (张通和), Wu Yu-Guang (吴瑜光), Liu Pei-Ying (刘培英), Qian Wei-Dong (钱卫东). Chin. Phys. B, 2002, 11(3): 272-276.
No Suggested Reading articles found!