Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 037509    DOI: 10.1088/1674-1056/ad1e69
COMPUTATIONAL PROGRAMS FOR PHYSICS Prev   Next  

Analysis of pseudo-random number generators in QMC-SSE method

Dong-Xu Liu(刘东旭), Wei Xu(徐维), and Xue-Feng Zhang(张学锋)
Department of Physics, Chongqing University, Chongqing 401331, China
Abstract  In the quantum Monte Carlo (QMC) method, the pseudo-random number generator (PRNG) plays a crucial role in determining the computation time. However, the hidden structure of the PRNG may lead to serious issues such as the breakdown of the Markov process. Here, we systematically analyze the performance of different PRNGs on the widely used QMC method known as the stochastic series expansion (SSE) algorithm. To quantitatively compare them, we introduce a quantity called QMC efficiency that can effectively reflect the efficiency of the algorithms. After testing several representative observables of the Heisenberg model in one and two dimensions, we recommend the linear congruential generator as the best choice of PRNG. Our work not only helps improve the performance of the SSE method but also sheds light on the other Markov-chain-based numerical algorithms.
Keywords:  stochastic series expansion      quantum Monte Carlo      pseudo-random number generator  
Received:  13 November 2023      Revised:  09 January 2024      Accepted manuscript online:  15 January 2024
PACS:  75.40.Mg (Numerical simulation studies)  
  02.70.Ss (Quantum Monte Carlo methods)  
  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12274046, 11874094, and 12147102), Chongqing Natural Science Foundation (Grant No. CSTB2022NSCQ-JQX0018), and Fundamental Research Funds for the Central Universities (Grant No. 2021CDJZYJH- 003).
Corresponding Authors:  Xue-Feng Zhang     E-mail:  zhangxf@cqu.edu.cn

Cite this article: 

Dong-Xu Liu(刘东旭), Wei Xu(徐维), and Xue-Feng Zhang(张学锋) Analysis of pseudo-random number generators in QMC-SSE method 2024 Chin. Phys. B 33 037509

[1] Hastings W K 1970 Biometrika 57 97
[2] Troyer M and Werner P 2009 AIP Conference Proceedings 1162 98
[3] Sandvik A W 1992 J. Phys. A: Math. Gen. 25 3667
[4] Sandvik A W, Singh R R P and Campbell D K 1997 Phys. Rev. B 56 14510
[5] Sandvik A W 1999 Phys. Rev. B 59 R14157
[6] Syljuåsen O F and Sandvik A W 2002 Phys. Rev. E 66 046701
[7] Ferrenberg A M, Landau D P and Wong Y J 1992 Phys. Rev. Lett. 69 3382
[8] Hongo K, Maezono R and Miura K 2010 Journal of Computational Chemistry 31 2186
[9] Click T H, Liu A and Kaminski G A 2011 Journal of Computational Chemistry 32 513
[10] L'Ecuyer P 1990 Communications of the ACM 33 85
[11] Ripley B D and Cox D R 1983 Proc. R. Soc. Lond. A 389 197
[12] Coddington P D 1996 International Journal of Modern Physics C 07 295
[13] Filk T, Marcu M and Fredenhagen K 1985 Phys. Lett. B 165 125
[14] Lüscher M 1994 Comput. Phys. Commun. 79 100
[15] Marsaglia G and Zaman A 1991 The Annals of Applied Probability 1 462
[16] Shao H, Guo W and Sandvik A W 2016 Science 352 213
[17] Yan Z, Wu Y, Liu C, Syljuåsen O F, Lou J and Chen Y 2019 Phys. Rev. B 99 165135
[18] Yan Z 2022 Phys. Rev. B 105 184432
[19] Evertz H G 2003 Adv. Phys. 52 1
[20] Pollock E L and Ceperley D M 1987 Phys. Rev. B 36 8343
[21] Hull T E and Dobell A R 1962 SIAM Review 4 230
[22] Knuth D E 2002 The Art of Computer Programing: Seminumerical Algorithms, Vol. 2 (Addison-Wesley, 2002)
[23] Matsumoto M and Nishimura T 1998 ACM Trans. Model. Comput. Simul. 8 3
[24] Saito M and Matsumoto M 2008 Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 607-622
[25] Panneton F, L'Ecuyer P and Matsumoto M 2006 ACM Trans. Math. Softw. 32 1
[26] O'Neill M E 2014 PCG: A Family of Simple Fast Space-Efficient Statistically Good Algorithms for Random Number Generation
[27] Rose G G 2018 Cryptography Commun. 10 123
[1] Neural network analytic continuation for Monte Carlo: Improvement by statistical errors
Kai-Wei Sun(孙恺伟) and Fa Wang(王垡). Chin. Phys. B, 2023, 32(7): 070705.
[2] FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient
Fei Yu(余飞), Zinan Zhang(张梓楠), Hui Shen(沈辉), Yuanyuan Huang(黄园媛), Shuo Cai(蔡烁), and Sichun Du(杜四春). Chin. Phys. B, 2022, 31(2): 020505.
[3] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[4] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[5] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[6] Magnetic excitations of diagonally coupled checkerboards
Tingting Yan(颜婷婷), Shangjian Jin(金尚健), Zijian Xiong(熊梓健), Jun Li(李军), and Dao-Xin Yao(姚道新). Chin. Phys. B, 2021, 30(10): 107505.
[7] Correlated insulating phases in the twisted bilayer graphene
Yuan-Da Liao(廖元达), Xiao-Yan Xu(许霄琰), Zi-Yang Meng(孟子杨), and Jian Kang(康健). Chin. Phys. B, 2021, 30(1): 017305.
[8] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[9] Quantum Monte Carlo study of the dominating pairing symmetry in doped honeycomb lattice
Xingchuan Zhu(朱兴川), Tao Ying(应涛), Huaiming Guo(郭怀明), Shiping Feng(冯世平). Chin. Phys. B, 2019, 28(7): 077401.
[10] Typicality at quantum-critical points
Lu Liu(刘录), Anders W Sandvik, Wenan Guo(郭文安). Chin. Phys. B, 2018, 27(8): 087501.
[11] Asymmetric response of magnetic impurity in Bernal-stacked bilayer honeycomb lattice
Jin-Hua Sun(孙金华), Ho-Kin Tang(邓皓键). Chin. Phys. B, 2018, 27(7): 077502.
[12] Quantum Monte Carlo study of hard-core bosons in Creutz ladder with zero flux
Yang Lin(林洋), Weichang Hao(郝维昌), Huaiming Guo(郭怀明). Chin. Phys. B, 2018, 27(1): 010204.
[13] Kernel polynomial representation for imaginary-time Green's functions in continuous-time quantum Monte Carlo impurity solver
Li Huang(黄理). Chin. Phys. B, 2016, 25(11): 117101.
No Suggested Reading articles found!